Featured Research

from universities, journals, and other organizations

Cloud formation: Insoluble dust particles can form cloud droplets that affect global and regional climate

Date:
October 13, 2011
Source:
Georgia Institute of Technology Research News
Summary:
New information on the role of insoluble dust particles in forming cloud droplets could improve the accuracy of regional climate models, especially in areas of the world that have significant amounts of mineral aerosols in the atmosphere.

Georgia Tech professors Irina Sokolik and Athanasios Nenes (front row, left-right) pose with graduate students Richard Moore and Terry Lathem (back row, left-right) in their laboratory. The researchers are studying the role played by insoluble dust particles in the formation of cloud droplets.
Credit: Georgia Tech photo by Gary Meek

New information on the role of insoluble dust particles in forming cloud droplets could improve the accuracy of regional climate models, especially in areas of the world that have significant amounts of mineral aerosols in the atmosphere. A more accurate accounting for the role of these particles could also have implications for global climate models.

Cloud properties can have a significant impact on climate, yet the effects of aerosols like dust is one of the more uncertain components of climate change models. Scientists have long recognized the importance of soluble particles, such as sea salt and sulfates, in creating the droplets that form clouds and lead to precipitation. But until now, the role of insoluble particles -- mostly dust swept into the atmosphere from such sources as deserts -- hasn't figured significantly in climate models.

Using a combination of physics-based theory and laboratory measurement of droplet formation, researchers at the Georgia Institute of Technology have developed a model that can be added to existing regional and global climate simulations. The impacts of these refinements on cloud condensation nuclei (CCN) activity and droplet activation kinetics are still being studied.

"Understanding that insoluble dust forms more droplets than we thought it could, and that those droplets form close to the sources of the particles, could change our picture of how precipitation is formed in areas like the Mediterranean, Asia and other climate-stressed regions," said Athanasios Nenes, a professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology.

The research was supported by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) and NASA. The findings were described at the Fall 2011 meeting of the American Chemical Society in Denver, and reported in the journals Geophysical Research Letters, Journal of Geophysical Research and Atmospheric Chemistry and Physics. A new paper on the global modeling impacts has been accepted for publication by the Journal of Geophysical Research.

Soluble particles nucleate droplets by absorbing water under conditions of high humidity. Insoluble materials such as dust cannot absorb water, so it was thought that they played little role in the formation of clouds and precipitation.

However, Nenes and collaborators realized that these dust particles could nucleate droplets in a different way -- by adsorbing moisture onto their surfaces, much as moisture condenses on window glass during temperature changes. Some insoluble particles containing clay materials may also adsorb moisture, even though they don't dissolve in it.

Working with Irina Sokolik, also a professor in the School of Earth and Atmospheric Sciences, Nenes and graduate student Prashant Kumar studied aerosol particles created from samples of desert soils from several areas of the world, including Northern Africa, East Asia/China and North America. In laboratory conditions simulating those of a saturated atmosphere, these insoluble particles formed cloud droplets, though the process was slower than the one producing droplets from soluble materials.

"We generated particles in the laboratory from materials we find in the atmosphere," explained Nenes, who also holds a faculty appointment in Georgia Tech's School of Chemical and Biomolecular Engineering. "These particles take up water using a mechanism that had not been considered before in models. It turns out that this process of adsorption soaks up enough water to form cloud droplets."

The laboratory work showed that smaller particles were more likely than expected to generate droplets, and that their effectiveness as cloud condensation nuclei was affected by the type of minerals present, their size, morphology and processes affecting them in the atmosphere. The dust particles ranged in size from 100 nanometers up to a few microns.

These mineral aerosols may consist of iron oxides, carbonates, quartz and clays. They mainly originate from arid and semi-arid regions, and can remain suspended in the atmosphere for as long as several weeks, allowing them to be transported long distances from their original sources. In the atmosphere, the dust particles tend to accumulate soluble materials as they age.

"We can simulate what is happening to the particles as they get slowly coated with more and more soluble materials," said Nenes. "As they get more and more soluble coatings on them, they become more hygroscopic."

The researchers are now working with collaborators in Germany to incorporate their new theories into existing climate models to see how they may change the predictions. They also hope to carry out new field work to measure the activity of these insoluble aerosols in real-world conditions.

"We now need to study the cloud particles in the atmosphere and their ability to form droplets to verify our theory using real atmospheric data," Nenes said. "We also need to look at dust and clouds from more regions of the world to make sure that the theory works for all of them."

Clouds play an important role in governing climate, so adding new information about their formation could improve the accuracy of complex climate models.

"The reason that we care about particle-cloud interactions is that they introduce a lot of uncertainties in climate model predictions," Nenes said. "Anything that can be done to improve these predictions by providing more specific cloud information would be helpful to projecting climate change."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology Research News. The original article was written by John Toon. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology Research News. "Cloud formation: Insoluble dust particles can form cloud droplets that affect global and regional climate." ScienceDaily. ScienceDaily, 13 October 2011. <www.sciencedaily.com/releases/2011/10/111013113814.htm>.
Georgia Institute of Technology Research News. (2011, October 13). Cloud formation: Insoluble dust particles can form cloud droplets that affect global and regional climate. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2011/10/111013113814.htm
Georgia Institute of Technology Research News. "Cloud formation: Insoluble dust particles can form cloud droplets that affect global and regional climate." ScienceDaily. www.sciencedaily.com/releases/2011/10/111013113814.htm (accessed September 20, 2014).

Share This



More Earth & Climate News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Rally Held in India Ahead of UN Summit

Climate Change Rally Held in India Ahead of UN Summit

AFP (Sep. 20, 2014) Some 125 world leaders are expected to commit to action on climate change at a UN summit Tuesday called to inject momentum in struggling efforts to tackle global warming. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins