Featured Research

from universities, journals, and other organizations

A hidden order unraveled: Microscopic views on quantum fluctuations

Date:
December 12, 2011
Source:
Ludwig-Maximilians-Universität München
Summary:
Fluctuations are fundamental to many physical phenomena in our everyday lives. Using a high resolution microscope, scientists have now been able to image quantum-correlated particle-hole pairs in a gas of ultracold atoms. This has allowed the physicists to unravel a hidden order in the crystal.

Fluctuations are fundamental to many physical phenomena in our everyday life, such as the phase transitions from a liquid into a gas or from a solid into a liquid. But even at absolute zero temperature, where all motion in the classical world is frozen out, special quantum mechanical fluctuations prevail that can drive the transition between two quantum phases.

Related Articles


Now a team around Immanuel Bloch and Stefan Kuhr at Ludwig-Maximilians University (LMU) and the Max Planck Institute of Quantum Optics (MPQ) has succeeded in directly observing such quantum fluctuations. Using a high resolution microscope, they were able to image quantum-correlated particle-hole pairs in a gas of ultracold atoms. This allowed the physicists to unravel a hidden order in the crystal and to characterize the different phases of the quantum gas. The work was performed together with scientists from the Theory Division at the MPQ and ETH Zurich. These measurements open new ways to characterize novel quantum phases of matter.

The scientists start by cooling a small cloud of rubidium atoms down to a temperature near absolute zero, about minus 273 degree Celsius. The ensemble is then subjected to a light field that severely restricts the motion of the particles along one-dimensional tubes of light aligned in parallel. An additional standing laser wave along the tubes creates a one-dimensional optical lattice that holds the atoms in a periodic array of bright and dark regions of light.

The atoms move in the periodic light field like electrons in solids. As these can be electric conductors or insulators, also the one-dimensional quantum gases can behave like a superfluid or like an insulator at low temperatures. In particular, the height of the optical lattice potential plays an important role: it determines whether the atom is fixed on a particular lattice site or whether is able to move to a neighbouring site. At very large lattice depths, each lattice site is occupied by exactly one atom. This highly ordered state is called a "Mott insulator," after the British physicist and Nobel laureate Sir Neville Mott. When the lattice depth is decreased slightly, the atoms have enough energy to reach a neighbouring site by quantum mechanical tunneling. In this way, pairs of empty and doubly occupied sites emerge, so-called particle-hole pairs. Intriguingly, these quantum fluctuations also occur at absolute zero temperature, when all movement in the classical world is frozen out. The position of the quantum-correlated particle-hole pairs in the crystal is completely undetermined and is fixed only by the measurement process.

In recent experiments, the physicists around Stefan Kuhr and Immanuel Bloch had already developed a method, which allowed to image single atoms lattice site by lattice site. The atoms are cooled using laser beams, and the fluorescence photons emitted in this process are used to observe the atoms with a high resolution microscope. Holes naturally show up as dark spots, but so do doubly occupied sites as the two particles kick each other out of the lattice in the experiment. Therefore particle-hole pairs appear as two neighbouring dark lattice sites. "With our technique, we can directly observe this fundamental quantum phenomenon for the first time," describes doctoral student Manuel Endres enthusiastically.

The physicists measure the number of neighbouring particle-hole pairs through a correlation function. With increasing kinetic energy, more and more particles tunnel to neighbouring sites and the pair correlations increase. However, when the number of particle-hole pairs is very large, it becomes difficult to unambiguously identify them. Hence the correlation function takes on smaller values. Finally, the ordered state of a Mott insulator vanishes completely und the quantum gas becomes a superfluid again. Here fluctuations of holes and particles occur independently. The correlation function measured in the experiment is very well reproduced by model calculations, which were performed by scientists from the Theory Division at the MPQ and the ETH Zurich. Interestingly, the same investigations on two-dimensional quantum-gases clearly showed that quantum fluctuations are not as prominent as in one-dimensional systems.

The scientists extended their analysis to correlations between several lattice sites along a string. Such non-local correlation functions contain important information about the underlying many-body system and can be used as an order parameter to characterize different quantum phases. In the experiment described here, such non-local order parameters have been measured for the first time. In the future, the scientists plan to use these measurements for the detection of topological quantum phases. These can be useful for robust quantum computers and could help to understand superconductivity at high temperatures. (MPQ)


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universität München. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauss, C. Gross, L. Mazza, M. C. Banuls, L. Pollet, I. Bloch, S. Kuhr. Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators. Science, 2011; 334 (6053): 200 DOI: 10.1126/science.1209284

Cite This Page:

Ludwig-Maximilians-Universität München. "A hidden order unraveled: Microscopic views on quantum fluctuations." ScienceDaily. ScienceDaily, 12 December 2011. <www.sciencedaily.com/releases/2011/10/111014122315.htm>.
Ludwig-Maximilians-Universität München. (2011, December 12). A hidden order unraveled: Microscopic views on quantum fluctuations. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/10/111014122315.htm
Ludwig-Maximilians-Universität München. "A hidden order unraveled: Microscopic views on quantum fluctuations." ScienceDaily. www.sciencedaily.com/releases/2011/10/111014122315.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) — With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) — A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) — Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins