Featured Research

from universities, journals, and other organizations

New method of growing high-quality graphene promising for next-gen technology

Date:
October 26, 2011
Source:
University of California - Santa Barbara
Summary:
Making waves as the material that will revolutionize electronics, graphene -- composed of a single layer of carbon atoms -- has nonetheless been challenging to produce in a way that will be practical for innovative electronics applications. Researchers have discovered a method to synthesize high quality graphene in a controlled manner that may pave the way for next-generation electronics application.

UCSB researchers have successfully controlled the growth of a high-quality bilayer graphene on a copper substrate using a method called chemical vapor deposition (CVD), which breaks down molecules of methane gas to build graphene sheets with carbon atoms.
Credit: Peter Allen

Making waves as the material that will revolutionize electronics, graphene -- composed of a single layer of Carbon atoms -- has nonetheless been challenging to produce in a way that will be practical for innovative electronics applications. Researchers at UC Santa Barbara have discovered a method to synthesize high quality graphene in a controlled manner that may pave the way for next-generation electronics application.

Kaustav Banerjee, a professor with the Electrical and Computer Engineering department and Director of the Nanoelectronics Research Lab at UCSB that has been studying carbon nanomaterials for more than seven years, led the research team to perfect methods of growing sheets of graphene, as detailed in a study to be published in the November 2011 issue of the journal Carbon.

"Our process has certain unique advantages that give rise to high quality graphene," says Banerjee. "For the electronics industry to effectively use graphene, it must first be grown selectively and in larger sheets. We have developed a synthesis technique that yields high- quality and high-uniformity graphene that can be translated into a scalable process for industry applications."

Using adhesive tape to lift flakes of graphene from graphite, University of Manchester researchers Geim and Novoselov were awarded the 2010 Nobel Prize in Physics for their pioneering isolation and characterization of the material. To launch graphene into futuristic applications, however, researchers have been seeking a controlled and efficient way to grow a higher quality of this single-atom-thick material in larger areas.

The discovery by UCSB researchers turns graphene production into an industry-friendly process by improving the quality and uniformity of graphene using efficient and reproducible methods. They were able to control the number of graphene layers produced -- from mono-layer to bi-layer graphene -- an important distinction for future applications in electronics and other technology.

"Intel has a keen interest in graphene due to many possibilities it holds for the next generation of energy- efficient computing, but there are many roadblocks along the way," added Intel Fellow, Shekhar Borkar. "The scalable synthesis technique developed by Professor Banerjee's group at UCSB is an important step forward."

As a material, graphene is the thinnest and strongest in the world -- more than 100 times stronger than diamond -- and is capable of acting as an ultimate conductor at room temperature. If it can be produced effectively, graphene's properties make it ideal for advancements in green electronics, super strong materials, and medical technology. Graphene could be used to make flexible screens and electronic devices, computers with 1,000 GHz processors that run on virtually no energy, and ultra-efficient solar power cells.

Key to the UCSB team's discovery is their understanding of graphene growth kinetics under the influence of the substrate. Their approach uses a method called low pressure chemical vapor deposition (LPCVD) and involves disintegrating the hydrocarbon gas methane at a specific high temperature to build uniform layers of carbon (as graphene) on a pretreated copper substrate. Banerjee's research group established a set of techniques that optimized the uniformity and quality of graphene, while controlling the number of graphene layers they grew on their substrate.

According to Dr. Wei Liu, a post-doctoral researcher and co-author of the study, "Graphene growth is strongly affected by imperfection sites on the copper substrate. By proper treatment of the copper surface and precise selection of the growth parameters, the quality and uniformity of graphene are significantly improved and the number of graphene layers can be controlled."

Professor Banerjee and credited authors Wei Liu, Hong Li, Chuan Xu and Yasin Khatami are not the first research team to make graphene using the CVD method, but they are the first to successfully refine critical methods to grow a high quality of graphene. In the past, a key challenge for the CVD method has been that it yields a lower quality of graphene in terms of carrier mobility -- or how well it conducts electrons. "Our graphene exhibits the highest reported field-effect mobility to date for CVD graphene, having an average value of 4000 cm2/V.s with the highest peak value at 5500 cm2/V.s. This is an extremely high value compared with the mobility of silicon." added Hong Li, a Ph.D. candidate in Banerjee's research group.

"Kaustav Banerjee's group is leading graphene nanoelectronics research efforts at UCSB, from material synthesis to device design and circuit exploration. His work has provided our campus with unique and very powerful capabilities," added David Awschalom, Professor of Physics, Electrical and Computer Engineering, and Director of the California NanoSystems Institute (CNSI) at UCSB where Banerjee's laboratory is located. "This new facility has also boosted our opportunities for collaborations across various science and engineering disciplines."

"There is no doubt graphene is a superior material. Intrinsically it is amazing," says Banerjee. "It is up to us, the scientists and engineers, to show how we can use graphene and harness its capabilities. There are challenges in how to grow it, how to transfer or not to transfer and pattern it, and how to tailor its properties for specific applications. But these challenges are fertile grounds for exciting research in the future."

Their research was supported by the National Science Foundation and conducted at the California NanoSystems Institute (CNSI) and Materials Research Laboratory (MRL) facilities at UC Santa Barbara.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Liu, Hong Li, Chuan Xu, Yasin Khatami, Kaustav Banerjee. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, 2011; 49 (13): 4122 DOI: 10.1016/j.carbon.2011.05.047

Cite This Page:

University of California - Santa Barbara. "New method of growing high-quality graphene promising for next-gen technology." ScienceDaily. ScienceDaily, 26 October 2011. <www.sciencedaily.com/releases/2011/10/111017092026.htm>.
University of California - Santa Barbara. (2011, October 26). New method of growing high-quality graphene promising for next-gen technology. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2011/10/111017092026.htm
University of California - Santa Barbara. "New method of growing high-quality graphene promising for next-gen technology." ScienceDaily. www.sciencedaily.com/releases/2011/10/111017092026.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins