Featured Research

from universities, journals, and other organizations

Plate tectonics may control reversals in Earth's magnetic field

Date:
October 23, 2011
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Earth's magnetic field has reversed many times at an irregular rate throughout its history. Long periods without reversal have been interspersed with eras of frequent reversals. What is the reason for these reversals and their irregularity? Researchers have shed new light on the issue by demonstrating that, over the last 300 million years, reversal frequency has depended on the distribution of tectonic plates on the surface of the globe. This result does not imply that terrestrial plates themselves trigger the switch over of the magnetic field. Instead, it establishes that although the reversal phenomenon takes place, in fine, within Earth's liquid core, it is nevertheless sensitive to what happens outside the core and more specifically in Earth's mantle.

Earth's magnetic field has reversed many times at an irregular rate throughout its history. Long periods without reversal have been interspersed with eras of frequent reversals. What is the reason for these reversals and their irregularity? Researchers from CNRS and the Institut de Physique du Globe(*) have shed new light on the issue by demonstrating that, over the last 300 million years, reversal frequency has depended on the distribution of tectonic plates on the surface of the globe. This result does not imply that terrestrial plates themselves trigger the switch over of the magnetic field. Instead, it establishes that although the reversal phenomenon takes place, in fine, within Earth's liquid core, it is nevertheless sensitive to what happens outside the core and more specifically in Earth's mantle.

Related Articles


This work is published on 16 October 2011 in Geophysical Research Letters.

Earth's magnetic field is produced by the flow of liquid iron within its core, three thousand kilometers below our feet. What made researchers think of a link between plate tectonics and the magnetic field? The discovery that convective liquid iron flows play a role in magnetic reversals: experiments and modeling work carried out over the last five years have in fact shown that a reversal occurs when the movements of molten metal are no longer symmetric with respect to the equatorial plane. This "symmetry breaking" could take place progressively, starting in an area located at the core-mantle boundary (the mantle separates Earth's liquid core from its crust), before spreading to the whole core (made of molten iron).

Extending this research, the authors of the article asked themselves whether some trace of initial symmetry breakings behind the geomagnetic reversals that have marked Earth's history, could be found in the only records of large-scale geological shifts in our possession, in other words the movements of continents (or plate tectonics). Some 200 million years ago, Pangaea, the name given to the supercontinent that encompassed almost all of Earth's land masses, began to break up into a multitude of smaller pieces that have shaped Earth as we know it today. By assessing the surface area of continents situated in the Northern hemisphere and those in the Southern hemisphere, the researchers were able to calculate a degree of asymmetry (with respect to the equator) in the distribution of the continents during that period.

In conclusion, the degree of asymmetry has varied at the same rhythm as the magnetic reversal rate (number of reversals per million years). The two curves have evolved in parallel to such an extent that they can almost be superimposed. In other words, the further the centre of gravity of the continents moved away from the equator, the faster the rate of reversals (up to eight per million years for a maximum degree of asymmetry).

What does this suggest about the mechanism behind geomagnetic reversals? The scientists envisage two scenarios. In the first, terrestrial plates could be directly responsible for variations in the frequency of reversals: after plunging into Earth's crust at subduction zones, the plates could descend until they reach the core, where they could modify the flow of iron. In the second, the movements of the plates may only reflect the mixing of the material taking place in the mantle and particularly at its base. In both cases, the movements of rocks outside the core would cause flow asymmetry in the liquid core and determine reversal frequency.

* -- Laboratoire de Physique Statistique of ENS (Ecole Normale Supérieure/CNRS/UPMC/Université Paris Diderot) and the Institut de Physique du Globe de Paris (CNRS/IPGP/Université Paris Diderot)


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Pétrélis, J. Besse, J.-P. Valet. Plate tectonics may control geomagnetic reversal frequency. Geophysical Research Letters, 2011; 38 (19) DOI: 10.1029/2011GL048784

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Plate tectonics may control reversals in Earth's magnetic field." ScienceDaily. ScienceDaily, 23 October 2011. <www.sciencedaily.com/releases/2011/10/111021084539.htm>.
CNRS (Délégation Paris Michel-Ange). (2011, October 23). Plate tectonics may control reversals in Earth's magnetic field. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/10/111021084539.htm
CNRS (Délégation Paris Michel-Ange). "Plate tectonics may control reversals in Earth's magnetic field." ScienceDaily. www.sciencedaily.com/releases/2011/10/111021084539.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins