Featured Research

from universities, journals, and other organizations

Extreme melting on greenland ice sheet, team reports; Glacial melt cycle could become self-amplifying

Date:
October 26, 2011
Source:
City College of New York
Summary:
The Greenland ice sheet can experience extreme melting even when temperatures don't hit record highs, according to a new analysis by Dr. Marco Tedesco, assistant professor in the Department of Earth and Atmospheric Sciences at the City College of New York. His findings suggest that glaciers could undergo a self-amplifying cycle of melting and warming that would be difficult to halt.

Marco Tedesco standing on the edge of one of four moulins (drainage holes) he and his team found at the bottom of a supraglacial lake during the expedition to Greenland in the summer, 2011.
Credit: P. Alexander

The Greenland ice sheet can experience extreme melting even when temperatures don't hit record highs, according to a new analysis by Dr. Marco Tedesco, assistant professor in the Department of Earth and Atmospheric Sciences at The City College of New York. His findings suggest that glaciers could undergo a self-amplifying cycle of melting and warming that would be difficult to halt.

"We are finding that even if you don't have record-breaking highs, as long as warm temperatures persist you can get record-breaking melting because of positive feedback mechanisms," said Professor Tedesco, who directs CCNY's Cryospheric Processes Laboratory and also serves on CUNY Graduate Center doctoral faculty.

Professor Tedesco and his team collected data for the analysis this past summer during a four-week expedition to the Jakobshavn Isbrζ glacier in western Greenland. Their arrival preceded the onset of the melt season.

Combining data gathered on the ground with microwave satellite recordings and the output from a model of the ice sheet, he and graduate student Patrick Alexander found a near-record loss of snow and ice this year. The extensive melting continued even without last year's record highs.

The team recorded data on air temperatures, wind speed, exposed ice and its movement, the emergence of streams and lakes of melt water on the surface, and the water's eventual draining away beneath the glacier. This lost melt water can accelerate the ice sheet's slide toward the sea where it calves new icebergs. Eventually, melt water reaches the ocean, contributing to the rising sea levels associated with long-term climate change.

The model showed that melting between June and August was well above the average for 1979 to 2010. In fact, melting in 2011 was the third most extensive since 1979, lagging behind only 2010 and 2007. The "mass balance," or amount of snow gained minus the snow and ice that melted away, ended up tying last year's record values.

Temperatures and an albedo feedback mechanism accounted for the record losses, Professor Tedesco explained. "Albedo" describes the amount of solar energy absorbed by the surface (e.g. snow, slush, or patches of exposed ice). A white blanket of snow reflects much of the sun's energy and thus has a high albedo. Bare ice -- being darker and absorbing more light and energy -- has a lower albedo.

But absorbing more energy from the sun also means that darker patches warm up faster, just like the blacktop of a road in the summer. The more they warm, the faster they melt.

And a year that follows one with record high temperatures can have more dark ice just below the surface, ready to warm and melt as soon as temperatures begin to rise. This also explains why more ice sheet melting can occur even though temperatures did not break records.

Professor Tedesco likens the melting process to a speeding steam locomotive. Higher temperatures act like coal shoveled into the boiler, increasing the pace of melting. In this scenario, "lower albedo is a downhill slope," he says. The darker surfaces collect more heat. In this situation, even without more coal shoveled into the boiler, as a train heads downhill, it gains speed. In other words, melting accelerates.

Only new falling snow puts the brakes on the process, covering the darker ice in a reflective blanket, Professor Tedesco says. The model showed that this year's snowfall couldn't compensate for melting in previous years. "The process never slowed down as much as it had in the past," he explained. "The brakes engaged only every now and again."

The team's observations indicate that the process was not limited to the glacier they visited; it is a large-scale effect. "It's a sign that not only do albedo and other variables play a role in acceleration of melting, but that this acceleration is happening in many places all over Greenland," he cautioned. "We are currently trying to understand if this is a trend or will become one. This will help us to improve models projecting future melting scenarios and predict how they might evolve."

Additional expedition team members included Christine Foreman of Montana State University, and Ian Willis and Alison Banwell of the Scott Polar Research Institute, Cambridge, UK.

Professor Tedesco and his team provide their preliminary results on the Cryospheric Processes Laboratory webpage (http://greenland2011.cryocity.org/). They will will be presenting further results at the American Geophysical Union Society (AGU) meeting in San Francisco on December 5 at 9 a.m. and December 6 at 11:35 a.m.

The research was supported by the National Science Foundation and the NASA Cryosphere Program. The World Wildlife Fund is acknowledged for supporting fieldwork activities.


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Cite This Page:

City College of New York. "Extreme melting on greenland ice sheet, team reports; Glacial melt cycle could become self-amplifying." ScienceDaily. ScienceDaily, 26 October 2011. <www.sciencedaily.com/releases/2011/10/111025163128.htm>.
City College of New York. (2011, October 26). Extreme melting on greenland ice sheet, team reports; Glacial melt cycle could become self-amplifying. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2011/10/111025163128.htm
City College of New York. "Extreme melting on greenland ice sheet, team reports; Glacial melt cycle could become self-amplifying." ScienceDaily. www.sciencedaily.com/releases/2011/10/111025163128.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Scientists Warn Of Likely El Niρo Event This Year

Scientists Warn Of Likely El Niρo Event This Year

Newsy (Apr. 22, 2014) — With Pacific ocean water already showing signs of warming, the NOAA says there's about a 66 percent chance the event will begin before November. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins