Featured Research

from universities, journals, and other organizations

Data transmission for the Internet of tomorrow: Scientists develop new concept for ultrafast lasers

Date:
November 12, 2011
Source:
Ruhr-Universitaet-Bochum
Summary:
Electrical engineers in Germany have succeeded in developing a new concept for ultrafast semiconductor lasers. The researchers make clever use of the intrinsic angular momentum of electrons, called spin, to successfully break the previous speed barriers. The new spin lasers have the potential to achieve modulation frequencies of well above 100 GHz in future. This is a decisive step towards high-speed data transmission, e.g. for the Internet of tomorrow.

Concept of a spin laser: By injecting spin-polarised electrons in semiconductor based microlasers, modulation speeds can be reached that are far superior to any conventional lasers.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

Electrical engineers in Bochum have succeeded in developing a new concept for ultrafast semiconductor lasers. The researchers make clever use of the intrinsic angular momentum of electrons, called spin, to successfully break the previous speed barriers. The new spin lasers have the potential to achieve modulation frequencies of well above 100 GHz in future. This is a decisive step towards high-speed data transmission, e.g. for the Internet of tomorrow.

The researchers report on their results in the journal Applied Physics Letters, published by the American Institute of Physics.

Optical data transmission: the basis of our information society

Optical data transmission by semiconductor lasers is a basic prerequisite for the globally networked world and today’s information society. The ever increasing degree of networking and the desire to exchange larger amounts of data are the driving force behind the development of ever faster optical data transmission systems. The maximum speed of conventional semiconductor lasers has long been a limiting factor - typical modulation frequencies are currently at levels well below 50 GHz.

Over 100 GHz possible: a barrier collapses

By using spin lasers, Bochum’s researchers were able to overcome the previous limits for the modulation speed. Whereas in conventional lasers, the spin of the electrons injected is entirely arbitrary, in spin lasers, only electrons with a previously determined spin state are used. By injecting these spin-polarised electrons, the laser is forced to work simultaneously on two laser modes with different frequencies. “This frequency difference can easily be tuned using the so-called birefringence in the resonator, for example by simply bending the microlaser” said Dr. Nils Gerhardt. By coupling the two laser modes in the microresonator, oscillation with a new frequency occurs, which can theoretically reach well over 100 GHz.

The researchers around Dr. Gerhardt obtained their results in the collaborative research centre 491 of the Universities of Bochum and Duisburg-Essen (“Magnetic Heterostructures: Spin Structure and Spin Transport”).


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. C. Gerhardt, M. Y. Li, H. Jähme, H. Höpfner, T. Ackemann, M. R. Hofmann. Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers. Applied Physics Letters, 2011; 99 (15): 151107 DOI: 10.1063/1.3651339

Cite This Page:

Ruhr-Universitaet-Bochum. "Data transmission for the Internet of tomorrow: Scientists develop new concept for ultrafast lasers." ScienceDaily. ScienceDaily, 12 November 2011. <www.sciencedaily.com/releases/2011/10/111028081955.htm>.
Ruhr-Universitaet-Bochum. (2011, November 12). Data transmission for the Internet of tomorrow: Scientists develop new concept for ultrafast lasers. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2011/10/111028081955.htm
Ruhr-Universitaet-Bochum. "Data transmission for the Internet of tomorrow: Scientists develop new concept for ultrafast lasers." ScienceDaily. www.sciencedaily.com/releases/2011/10/111028081955.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins