Featured Research

from universities, journals, and other organizations

Highly efficient oxygen catalyst found: Rechargeable batteries and hydrogen-fuel production could benefit

Date:
October 31, 2011
Source:
Massachusetts Institute of Technology
Summary:
A team of researchers has found one of the most effective catalysts ever discovered for splitting oxygen atoms from water molecules -- a key reaction for advanced energy-storage systems, including electrolyzers, to produce hydrogen fuel and rechargeable batteries. This new catalyst liberates oxygen at more than 10 times the rate of the best previously known catalyst of its type.

Materials Science and Engineering Graduate Student Jin Suntivich (left) and Mechanical Engineering Graduate Student Kevin J. May (right) inspecting the electrochemical cell for oxygen evolution reaction experiment.
Credit: Photo by Jonathon R. Harding

A team of researchers at MIT has found one of the most effective catalysts ever discovered for splitting oxygen atoms from water molecules -- a key reaction for advanced energy-storage systems, including electrolyzers, to produce hydrogen fuel and rechargeable batteries. This new catalyst liberates oxygen at more than 10 times the rate of the best previously known catalyst of its type.

Related Articles


The new compound, composed of cobalt, iron and oxygen with other metals, splits oxygen from water (called the Oxygen Evolution Reaction, or OER) at a rate at least an order of magnitude higher than the compound currently considered the gold standard for such reactions, the team says. The compound's high level of activity was predicted from a systematic experimental study that looked at the catalytic activity of 10 known compounds.

The team, which includes materials science and engineering graduate student Jin Suntivich, mechanical engineering graduate student Kevin J. May and professor Yang Shao-Horn, published their results in Science on Oct. 28.

The scientists found that reactivity depended on a specific characteristic: the configuration of the outermost electron of transition metal ions. They were able to use this information to predict the high reactivity of the new compound -- which they then confirmed in lab tests.

"We not only identified a fundamental principle" that governs the OER activity of different compounds, "but also we actually found this new compound" based on that principle, says Shao-Horn, the Gail E. Kendall (1978) Associate Professor of Mechanical Engineering and Materials Science and Engineering.

Many other groups have been searching for more efficient catalysts to speed the splitting of water into hydrogen and oxygen. This reaction is key to the production of hydrogen as a fuel to be used in cars; the operation of some rechargeable batteries, including zinc-air batteries; and to generate electricity in devices called fuel cells. Two catalysts are needed for such a reaction -- one that liberates the hydrogen atoms, and another for the oxygen atoms -- but the oxygen reaction has been the limiting factor in such systems.

Other groups, including one led by MIT's Daniel Nocera, have focused on similar catalysts that can operate -- in a so-called "artificial leaf" -- at low cost in ordinary water. But such reactions can occur with higher efficiency in alkaline solutions, which are required for the best previously known catalyst, iridium oxide, as well as for this new compound.

Shao-Horn and her collaborators are now working with Nocera, integrating their catalyst with his artificial leaf to produce a self-contained system to generate hydrogen and oxygen when placed in an alkaline solution. They will also be exploring different configurations of the catalyst material to better understand the mechanisms involved. Their initial tests used a powder form of the catalyst; now they plan to try thin films to better understand the reactions.

In addition, even though they have already found the highest rate of activity yet seen, they plan to continue searching for even more efficient catalyst materials. "It's our belief that there may be others with even higher activity," Shao-Horn says.

Jens Norskov, a professor of chemical engineering at Stanford University and director of the Suncat Center for Interface Science and Catalysis there, who was not involved in this work, says, "I find this an extremely interesting 'rational design' approach to finding new catalysts for a very important and demanding problem."

The research, which was done in collaboration with visiting professor Hubert A. Gasteiger (currently a professor at the Technische Universitδt Mόnchen in Germany) and professor John B. Goodenough from the University of Texas at Austin, was supported by the U.S. Department of Energy's Hydrogen Initiative, the National Science Foundation, the Toyota Motor Corporation and the Chesonis Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David L. Chandler, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 2011; DOI: 10.1126/science.1212858

Cite This Page:

Massachusetts Institute of Technology. "Highly efficient oxygen catalyst found: Rechargeable batteries and hydrogen-fuel production could benefit." ScienceDaily. ScienceDaily, 31 October 2011. <www.sciencedaily.com/releases/2011/10/111028105033.htm>.
Massachusetts Institute of Technology. (2011, October 31). Highly efficient oxygen catalyst found: Rechargeable batteries and hydrogen-fuel production could benefit. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/10/111028105033.htm
Massachusetts Institute of Technology. "Highly efficient oxygen catalyst found: Rechargeable batteries and hydrogen-fuel production could benefit." ScienceDaily. www.sciencedaily.com/releases/2011/10/111028105033.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins