Featured Research

from universities, journals, and other organizations

One step closer to dark matter in universe

Date:
October 31, 2011
Source:
Expertanswer
Summary:
Scientists all over the world are working feverishly to find the dark matter in the universe. Now researchers have taken one step closer to solving the enigma with a new method.

Scientists all over the world are working feverishly to find the dark matter in the universe. Now researchers at Stockholm University have taken one step closer to solving the enigma with a new method.

Related Articles


The universe is still a mystery. We know what about 5 percent of the universe consists of. The rest is simply unknown. Researchers have gotten as far as knowing that a major portion, about 23 percent of the universe consists of a new kind of matter. No one has seen this matter, and no one knows what it consists of. The remaining roughly 72 percent of the universe is made up of something even more enigmatic, called dark energy. Jan Conrad and Maja Llena Garde are scientists at Fysikum, Stockholm University and the Oskar Klein Center for Cosmoparticle Physics, and they are part of the international research team that has taken a giant step toward finding dark matter with the help of a new method.

"With our new method, for the first time we have been able to exclude models regarded by many as the most natural ones. Previous attempts did not achieve the same sensitivity. What's more, our results are especially reliable," says Jan Conrad.

"We can't see dark matter because it doesn't interact with the matter we know about. Nor does it emit any light. It's virtually invisible. But we can determine that it affects the matter we're familiar with."

"We see how the rotation of galaxies is affect by something that weighs a lot but is invisible. We also see how the gas in galaxy clusters doesn't move as it would if there were only visible matter present. So we know it's there. The question is simply what it is. Many theoretical models have been developed to predict particles that meet the requirements for being identified as dark matter. But experiments are needed if we are to determine whether any of these models are correct," says Jan Conrad.

Since dark matter is invisible, we can only see traces of it, and one way to do this is to look at light with extremely high energy, so-called gamma radiation. With the help of the satellite-borne Fermi Large Area Telescope, scientists can study gamma radiation and look for traces of dark matter.

"We've looked at gamma radiation from dwarf galaxies. These galaxies are small and dim, but extremely massive, so they seem to consist largely of dark matter. Unfortunately we still haven't detected a gamma signal from the dark matter in these objects, but we are definitely getting closer. Our new method involves looking at several dwarf galaxies at the same time and combining the observations in a new way, which yields excellent results. This is an exciting time for dark matter research, because we're getting closer and closer," says Maja Llena Garde.

"This is truly a giant step forward in our pursuit of dark matter," says the director of the Oskar Klein Center, Lars Bergstrφm. "With my colleague Joakim Edsjφ, I've studied these processes theoretically for more than ten years, but this is the first time important experimental breakthroughs are being seen. Now we just hope that Jan, Maja, and the Fermi team will continue this exciting quest using their new method."


Story Source:

The above story is based on materials provided by Expertanswer. Note: Materials may be edited for content and length.


Journal Reference:

  1. The Fermi-LAT Collaboration: M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R. D. Blandford, E. D. Bloom, E. Bonamente, A. W. Borgland, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, T. H. Burnett, S. Buson, G. A. Caliandro, R. A. Cameron, B. Canadas, P. A. Caraveo, J. M. Casandjian, C. Cecchi, E. Charles, A. Chekhtman, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, S. Cutini, A. de Angelis, F. de Palma, C. D. Dermer, S. W. Digel, E. do Couto e Silva, P. S. Drell, A. Drlica-Wagner, L. Falletti, C. Favuzzi, S. J. Fegan, E. C. Ferrara, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I. A. Grenier, et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. Physical Review Letters, 2011 [link]

Cite This Page:

Expertanswer. "One step closer to dark matter in universe." ScienceDaily. ScienceDaily, 31 October 2011. <www.sciencedaily.com/releases/2011/10/111031081920.htm>.
Expertanswer. (2011, October 31). One step closer to dark matter in universe. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2011/10/111031081920.htm
Expertanswer. "One step closer to dark matter in universe." ScienceDaily. www.sciencedaily.com/releases/2011/10/111031081920.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Astronauts Leave Space Station for Third Spacewalk

Astronauts Leave Space Station for Third Spacewalk

Reuters - News Video Online (Mar. 1, 2015) — NASA Commander Barry Wilmore and Flight Engineer Terry Virts perform their third spacewalk in eight days outside the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Newsy (Mar. 1, 2015) — Astronauts are ahead of schedule with hardware upgrades to the International Space Station, despite last week&apos;s spacesuit water leak scare. Video provided by Newsy
Powered by NewsLook.com
Black Hole 12 Billion Times the Size of Sun Discovered at Dawn of Universe

Black Hole 12 Billion Times the Size of Sun Discovered at Dawn of Universe

Buzz60 (Feb. 26, 2015) — Scientists are saying they&apos;ve spotted a black hole 12 billion time bigger than the sun. Patrick Jones (@Patrick_E_Jones) has the details. Video provided by Buzz60
Powered by NewsLook.com
NASA's Dawn Spacecraft Spots Two Bright Points On Ceres

NASA's Dawn Spacecraft Spots Two Bright Points On Ceres

Newsy (Feb. 26, 2015) — NASA scientists still don&apos;t have a clear picture of the bright spots showing up on the surface of Ceres, a minor planet in the asteroid belt. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins