Featured Research

from universities, journals, and other organizations

Unique bipolar compounds enhance functionality of organic electronics

Date:
November 10, 2011
Source:
University of Toronto Faculty of Applied Science & Engineering
Summary:
Researchers have uncovered compounds that exhibit unique and novel electrochemical properties.

Researchers often work with a narrow range of compounds when making organic electronics, such as solar panels, light emitting diodes and transistors. Professor Tim Bender and Ph.D. Candidate Graham Morse of U of T's Department of Chemical Engineering and Applied Chemistry have uncovered compounds that exhibit unique and novel electrochemical properties.

"Organic solar cell need to absorb light, move electrons and transport holes. Normally you need one compound to do each function. Researchers have found compounds that can do two of the three. Our discovery leads to the potential of achieving all three with a single compound," explains Bender.

During the summer of 2010, Bender gave Morse the very broad task of assessing new compositions of matter. Morse proposed a research hypothesis that led to the discovery of a new class of compounds with phthalimido molecular fragments. Along with fellow U of T collaborators, the pair have shown that their new compounds present the ability to move both holes and electrons in an organic light emitting diode (OLED). Given these compounds absorb sunlight as well, they have the potential to execute all three tasks needed for a functional organic solar cell. Bender and Morse are currently investigating this likelihood.

"Compounds with such electrochemical behaviour are very rare. The knowledge we developed will further an understanding of future compounds and synthesis strategies," says Morse.

An important part of Bender and Morse's work was the use of inexpensive raw materials and scalable synthetic methods so their research could transition smoothly into the next steps for materials development and conceivably a commercial product.

The detailed findings of their study were recently published in Applied Materials and Interfaces, an interdisciplinary journal designed to report on the function and development of new cutting-edge materials and their applications. The journal falls under the American Chemical Society -- a top tier publisher in the field of chemistry and its application.


Story Source:

The above story is based on materials provided by University of Toronto Faculty of Applied Science & Engineering. The original article was written by Jennifer Hsu. Note: Materials may be edited for content and length.


Journal Reference:

  1. Graham E. Morse, Jeffery S. Castrucci, Michael G. Helander, Zheng-Hong Lu, Timothy P. Bender. Phthalimido-boronsubphthalocyanines: New Derivatives of Boronsubphthalocyanine with Bipolar Electrochemistry and Functionality in OLEDs.. ACS Applied Materials & Interfaces, 2011; 3 (9): 3538 DOI: 10.1021/am200758w

Cite This Page:

University of Toronto Faculty of Applied Science & Engineering. "Unique bipolar compounds enhance functionality of organic electronics." ScienceDaily. ScienceDaily, 10 November 2011. <www.sciencedaily.com/releases/2011/11/111106151510.htm>.
University of Toronto Faculty of Applied Science & Engineering. (2011, November 10). Unique bipolar compounds enhance functionality of organic electronics. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/11/111106151510.htm
University of Toronto Faculty of Applied Science & Engineering. "Unique bipolar compounds enhance functionality of organic electronics." ScienceDaily. www.sciencedaily.com/releases/2011/11/111106151510.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins