Featured Research

from universities, journals, and other organizations

First proof of principle for treating rare bone disease

Date:
November 10, 2011
Source:
University of Pennsylvania School of Medicine
Summary:
Scientists have developed a new genetic approach to specifically block the damaged copy of the gene for a rare bone disease, while leaving the normal copy untouched.

Microscopic image of tooth-derived stem cells from an FOP patient acquired through the "Good Tooth Fairy" program at the Perelman School of Medicine at the University of Pennsylvania.
Credit: Josef Kaplan. PhD, Perelman School of Medicine, University of Pennsylvania

Scientists at Penn's Perelman School of Medicine Center for Research in FOP and Related Disorders have developed a new genetic approach to specifically block the damaged copy of the gene for a rare bone disease, while leaving the normal copy untouched.

Related Articles


Lead author Josef Kaplan, PhD, postdoctoral fellow; and senior authors Eileen M. Shore, PhD, and Frederick S. Kaplan, MD, both from the Department of Orthopaedic Surgery, published this new proof-of-principle approach for treating the disease, called FOP, in the online edition of Gene Therapy.

FOP, fibrodysplasia ossificans progressiva, is a rare genetic disorder of progressive extra bone formation for which there is presently no cure. It is caused by a mutation in the gene for ACVR1/ALK2, a bone morphogenetic protein (BMP) receptor that occurs in all classically affected individuals. Individuals who have FOP harbor one normal copy and one damaged copy of the ACVR1/ALK2 gene in each cell. The mutation increases the amount of BMP in cells to greater than normal levels, which initiates the transformation of muscles and cartilage into a disabling second skeleton of bone.

Using a special type of RNA molecule engineered to specifically silence the damaged copy of the gene rather than the normal copy -- a process known as RNA interference, or RNAi -- the scientists restored the cellular function caused by the FOP mutation by ridding cells of the mutant ACVR1/ALK2 mRNA. Cells were essentially left with only normal copies of ACVR1/ALK2 mRNA, thus adjusting the protein's activity to normal, similar to that of cells without the FOP mutation.

The human cells used in the experiments were adult stem cells obtained directly from discarded baby teeth donated by FOP patients. These contained the exact combination of damaged and normal ACVR1/ALK2 receptor proteins found in all classically affected FOP patients worldwide. The discarded teeth were obtained from FOP pediatric patients and normal controls, usually non-affected siblings, in the ongoing "FOP Good Tooth Fairy Program."

The authors caution that the utility of the RNAi approach must be confirmed in mouse models of classic FOP prior to its consideration for human use. Additionally, other hurdles stand in the way of human application at the present time, most notably safe delivery of the small RNA molecules to cells in the human body.

The authors acknowledge that they have a long way to go, but have taken a big first step. "Improvements in RNAi design are advancing at a rapid rate and will enhance the stability, potency, and specificity of inhibitory RNAs, allowing for long-term experiments both in vitro and in vivo," says Shore.

This work was supported in part by the International Fibrodysplasia Ossificans Progressiva Association, the Center for Research in FOP and Related Disorders, the Ian Cali Endowment for FOP Research, the Whitney Weldon Endowment for FOP Research, the Isaac & Rose Nassau Professorship of Orthopaedic Molecular Medicine (Fred Kaplan) and by grants from the Rita Allan Foundation, and the National Institute of Arthritis and Musculoskeletal Diseases.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. J Kaplan, F S Kaplan, E M Shore. Restoration of normal BMP signaling levels and osteogenic differentiation in FOP mesenchymal progenitor cells by mutant allele-specific targeting. Gene Therapy, 2011; DOI: 10.1038/gt.2011.152

Cite This Page:

University of Pennsylvania School of Medicine. "First proof of principle for treating rare bone disease." ScienceDaily. ScienceDaily, 10 November 2011. <www.sciencedaily.com/releases/2011/11/111109125739.htm>.
University of Pennsylvania School of Medicine. (2011, November 10). First proof of principle for treating rare bone disease. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/11/111109125739.htm
University of Pennsylvania School of Medicine. "First proof of principle for treating rare bone disease." ScienceDaily. www.sciencedaily.com/releases/2011/11/111109125739.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins