Featured Research

from universities, journals, and other organizations

Physicists chip away at mystery of antimatter imbalance

Date:
November 10, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Why there is stuff in the universe is one of the long-standing mysteries of cosmology. A team of researchers has just concluded a 10-year-long study of the fate of neutrons in an attempt to resolve the question, the most sensitive such measurement ever made. The universe, they concede, has managed to keep its secret for the time being, but they've succeeded in significantly narrowing the number of possible answers.

Two types of neutron decay produce a proton, an electron and an electron antineutrino but eject them in different configurations, The experiments at NIST detected no imbalance, but the improved sensitivity could help place limits on competing theories about the matter-antimatter imbalance in the universe.
Credit: emiT team

Why there is stuff in the universe -- more properly, why there is an imbalance between matter and antimatter -- is one of the long-standing mysteries of cosmology. A team of researchers working at the National Institute of Standards and Technology (NIST) has just concluded a 10-year-long study of the fate of neutrons in an attempt to resolve the question, the most sensitive such measurement ever made. The universe, they concede, has managed to keep its secret for the time being, but they've succeeded in significantly narrowing the number of possible answers.

Though the word itself evokes science fiction, antimatter is an ordinary -- if highly uncommon -- material that cosmologists believe once made up almost exactly half of the substance of the universe. When particles and their antiparticles come into contact, they instantly annihilate one another in a flash of light. Billions of years ago, most of the matter and all of the antimatter vanished in this fashion, leaving behind a tiny bit of matter awash in cosmic energy. What we see around us today, from stars to rocks to living things, is made up of that excess matter, which survived because a bit more of it existed.

"The question is, why was there an excess of one over the other in the first place?" says Pieter Mumm, a physicist at NIST's Physical Measurements Lab. "There are lots of theories attempting to explain the imbalance, but there's no experimental evidence to show that any of them can account for it. It's a huge mystery on the level of asking why the universe is here. Accepted physics can't explain it."

An answer might be found by examining radioactivity in neutrons, which decay in two different ways that can be distinguished by a specially configured detector. Though all observations thus far have invariably shown these two ways occur with equal frequency in nature, finding a slight imbalance between the two would imply that nature favors conditions that would create a bit more matter than antimatter, resulting in the universe we recognize.

Mumm and his collaborators from several institutions used a detector at the NIST Center for Neutron Research to explore this aspect of neutron decay with greater sensitivity than was ever possible before. For the moment, the larger answer has eluded them -- several years of observation and data analysis once again turned up no imbalance between the two decay paths. But the improved sensitivity of their approach means that they can severely limit some of the numerous theories about the universe's matter-antimatter imbalance, and with future improvements to the detector, their approach may help constrain the possibilities far more dramatically.

"We have placed very tight constraints on what these theories can say," Mumm says. "We have given theory something to work with. And if we can modify our detector successfully, we can envision limiting large classes of theories. It will help ensure the physics community avoids traveling down blind alleys."

The research team also includes scientists from the University of Washington, the University of Michigan, the University of California at Berkeley, Lawrence Berkeley National Laboratory, Tulane University, the University of Notre Dame, Hamilton College and the University of North Carolina at Chapel Hill. Funding was provided by the U.S. Department of Energy and the National Science Foundation.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Mumm, T. Chupp, R. Cooper, K. Coulter, S. Freedman, B. Fujikawa, A. Garcνa, G. Jones, J. Nico, A. Thompson, C. Trull, J. Wilkerson, F. Wietfeldt. New Limit on Time-Reversal Violation in Beta Decay. Physical Review Letters, 2011; 107 (10) DOI: 10.1103/PhysRevLett.107.102301

Cite This Page:

National Institute of Standards and Technology (NIST). "Physicists chip away at mystery of antimatter imbalance." ScienceDaily. ScienceDaily, 10 November 2011. <www.sciencedaily.com/releases/2011/11/111109161336.htm>.
National Institute of Standards and Technology (NIST). (2011, November 10). Physicists chip away at mystery of antimatter imbalance. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/11/111109161336.htm
National Institute of Standards and Technology (NIST). "Physicists chip away at mystery of antimatter imbalance." ScienceDaily. www.sciencedaily.com/releases/2011/11/111109161336.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins