Featured Research

from universities, journals, and other organizations

New advances in the study of silicon structure

Date:
November 14, 2011
Source:
Universidad de Barcelona
Summary:
Amorphous silicon is one of the key materials in the manufacturing of next-generation solar panels and flat-screen televisions. A recent study has revealed that the energy of amorphous silicon – the state in which it exhibits the greatest stability – is 50% lower than the value commonly accepted until now. According to the researchers, this information is important for understanding the structure of the material and improving its properties.

The study has revealed that the energy of amorphous silicon is 50% lower than the value commonly accepted until now.
Credit: Image courtesy of Universidad de Barcelona

Amorphous silicon is one of the key materials in the manufacturing of next-generation solar panels and flat-screen televisions. A recent study carried out by researchers from the University of Girona, with the support of laboratories operated by the University of Barcelona and the French National Centre for Scientific Research (CNRS) has revealed that the energy of amorphous silicon -- the state in which it exhibits the greatest stability -- is 50% lower than the value commonly accepted until now. According to the researchers, this information is important for understanding the structure of the material and improving its properties.

Unlike crystalline materials, in which atoms are found in ordered arrangements, amorphous solids do not have a clearly defined structure. While each atom in an ordered configuration has only a single possible position, the atoms in an amorphous structure can shift to different positions to adopt multiple arrangements with different energy levels. According to a theory published at the end of the 1980s, amorphous silicon could only exist above a minimum degree of disorder. The most ordered configuration, known as the relaxed state, gives the material greater stability and reduces the variability of its properties over time. Consequently, deposition techniques for amorphous silicon thin films are designed get as close as possible to the relaxed state.

Despite the importance of theoretical prediction, until now the energy of silicon in the relaxed state had not been experimentally determined. In the study published in the specialist journal Physica Status Solidi-Rapid Research Letters, differential scanning calorimetry was used to measure the energy of 20 samples grown by several deposition techniques. It was found that although different values were obtained for samples deposited in the same way, the minimum value coincided for all deposition techniques. This fact, together with observations based on previous studies, has led to the conclusion that the value of the minimum energy corresponds to the relaxed state. The value obtained is 50% lower than the standard figure accepted until now and is a crucial finding for specialists in amorphous silicon structure, since theoretical models will be more or less realistic depending on their proximity to this value.

Finally, the results corroborate the experimental findings up to this point, which indicate that the best films are those obtained from the vapour phase and whose structure includes hydrogen atoms.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Kail, J. Farjas, P. Roura, C. Secouard, O. Nos, J. Bertomeu, P. Roca i Cabarrocas. The configurational energy gap between amorphous and crystalline silicon. Physica Status Solidi (RRL) - Rapid Research Letters, 2011; 5 (10-11): 361 DOI: 10.1002/pssr.201105333

Cite This Page:

Universidad de Barcelona. "New advances in the study of silicon structure." ScienceDaily. ScienceDaily, 14 November 2011. <www.sciencedaily.com/releases/2011/11/111109193644.htm>.
Universidad de Barcelona. (2011, November 14). New advances in the study of silicon structure. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/11/111109193644.htm
Universidad de Barcelona. "New advances in the study of silicon structure." ScienceDaily. www.sciencedaily.com/releases/2011/11/111109193644.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins