Featured Research

from universities, journals, and other organizations

Planting depth's effect on container-grown trees

Date:
November 17, 2011
Source:
American Society for Horticultural Science
Summary:
Researchers tested the effects of planting depth of container-grown liners of pin oak and littleleaf linden. The study investigated tree growth during production in nursery containers and growth and development of root defects for three growing seasons after transplanting the trees to field soil (with and without remediation). The results suggested that implementing practices to minimize deep planting of liners in containers will allow commercial growers to produce healthier trees.

Many landscape trees are started in-ground, then sold as bare-root ''liners'' to producers who plant them in large containers to grow. To minimize wind damage and to facilitate transport from potting areas to growing beds, the liners are often buried deeper than necessary. This deep planting of liners results in "finished" container plants with deep structural roots, important foundations of root systems responsible for trees' health and stability. Deep structural roots are thought to contribute to physiological stresses resulting from oxygen deprivation.

J. Roger Harris and Susan D. Day from Virginia Polytechnic Institute and State University reported on their study of planting depth on pin oak and littleleaf linden trees in HortScience. "Green industry professionals are concerned about the increased number of landscape trees showing abnormally deep structural roots," Harris said. "Yet, the consequences of deep planting in production containers or the consequences of any adjustments made to planting depth at the time of transplant on growth in the landscape have not been reported for many species."

Harris and Day planted container-grown liners of pin oak and littleleaf linden trees in 50-L containers with the first main lateral roots (structural roots) at substrate-surface grade or 10 cm or 20 cm below grade (deep planting). Trees were grown in the 50-L containers for two growing seasons and in a simulated landscape for three additional seasons after transplanting, either with the top of the container substrate at soil level or with some roots and substrate removed so the original structural roots were just below the soil surface (remediated).

The experiments showed that deep planting pin oak -- but not littleleaf linden -- slowed growth during container production, but this effect did not continue after transplanting. Remediation of the 20-cm-deep pin oaks slowed growth during all three post-transplant years. Littleleaf linden remediation slowed growth for the first season after transplanting to a simulated landscape for 10-cm-deep trees and for the first two seasons for 20-cm-deep trees.

Evaluation of pin oak root systems three years after transplanting revealed vigorous growth of non-deflected adventitious roots that had formed on the trunks of deep trees; these roots appeared to be developing into main structural roots. No adventitious roots were present on littleleaf linden. Instead, deflected roots grew and produced deformed root systems on the linden trees.

"Remediating these species so as to expose root flares and to remove circling roots at transplanting may be more critical to ensure future health and stability of the tree. Thus, the resulting slower post-transplant growth is probably a justifiable expense," Harris said. "Our observations of littleleaf linden root system conditions three years after transplanting from containers suggest that root ball alteration at planting -- such as shaving or slicing outside edges or the use of special root pruning containers -- should also be considered."

Harris and Day said their research suggests that nursery practices that minimize deep planting of liners in containers should be used as a general practice, regardless of tree species.


Story Source:

The above story is based on materials provided by American Society for Horticultural Science. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Horticultural Science. "Planting depth's effect on container-grown trees." ScienceDaily. ScienceDaily, 17 November 2011. <www.sciencedaily.com/releases/2011/11/111117140625.htm>.
American Society for Horticultural Science. (2011, November 17). Planting depth's effect on container-grown trees. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/11/111117140625.htm
American Society for Horticultural Science. "Planting depth's effect on container-grown trees." ScienceDaily. www.sciencedaily.com/releases/2011/11/111117140625.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins