Featured Research

from universities, journals, and other organizations

Carbon cycling was much smaller during last ice age than in today's climate

Date:
November 20, 2011
Source:
University of Bristol
Summary:
A reconstruction of plants' productivity and the amount of carbon stored in the ocean and terrestrial biosphere at the last ice age has just been completed. The research greatly increases our understanding of natural carbon cycle dynamics.

A reconstruction of plants' productivity and the amount of carbon stored in the ocean and terrestrial biosphere at the last ice age is published November 20 in Nature Geoscience. The research by an international team of scientists greatly increases our understanding of natural carbon cycle dynamics.

Atmospheric carbon dioxide (CO2) is one of the most important greenhouse gases and the increase of its abundance in the atmosphere by fossil fuel burning is the main cause of future global warming. In past times, during the transition between an ice age and a warm period, atmospheric CO2 concentrations changed by some 100 parts per million (ppm) -- from an ice age value of 180 ppm to about 280 ppm during warm periods.

Scientists can reconstruct these changes in the atmospheric carbon stock using direct measurements of atmospheric CO2 trapped in air bubbles in the depth of Antarctica's ice sheets. However explaining the cause of these 100ppm changes in atmospheric CO2 concentrations between glacial and interglacial climate states -- as well as estimating the carbon stored on land and in the ocean -- is far more difficult.

The researchers, led by Dr Philippe Ciais of the Laboratoire des Sciences du Climat et l'Environnement near Paris, ingeniously combined measurements of isotopes of atmospheric oxygen (18O) and carbon (13C) in marine sediments and ice cores with results from dynamic global vegetation models, the latter being driven by estimates of glacial climate using climate models.

Dr Marko Scholze of the University of Bristol's School of Earth Sciences, co-author on the paper said: "The difference between glacial and pre-industrial carbon stored in the terrestrial biosphere is only about 330 petagrams of carbon, which is much smaller than previously thought. The uptake of carbon by vegetation and soil, that is the terrestrial productivity during the ice age, was only about 40 petagrams of carbon per year and thus much smaller: roughly one third of present-day terrestrial productivity and roughly half of pre-industrial productivity."

From these results, the authors conclude that the cycling of carbon in the terrestrial biosphere -- that is, the time between uptake by photosynthesis and release by decomposition of dead plant material -- must have been much smaller than in the current, warmer climate. Furthermore there must have been a much larger size of non-decomposable carbon on land during the Last Glacial Maximum (the period in Earth's history when ice sheets were at their maximum extension, between 26,500 and 19,000 years ago).

The authors suggest that this inert carbon should have been buried in the permanently frozen soils and large amounts of peat of the northern tundra regions.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Ciais, A. Tagliabue, M. Cuntz, L. Bopp, M. Scholze, G. Hoffmann, A. Lourantou, S. P. Harrison, I. C. Prentice, D. I. Kelley, C. Koven and S. L. Piao. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience, Nov 20, 2011

Cite This Page:

University of Bristol. "Carbon cycling was much smaller during last ice age than in today's climate." ScienceDaily. ScienceDaily, 20 November 2011. <www.sciencedaily.com/releases/2011/11/111120134753.htm>.
University of Bristol. (2011, November 20). Carbon cycling was much smaller during last ice age than in today's climate. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/11/111120134753.htm
University of Bristol. "Carbon cycling was much smaller during last ice age than in today's climate." ScienceDaily. www.sciencedaily.com/releases/2011/11/111120134753.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Phoenix Thunderstorm Creates Giant Wall of Dust

Phoenix Thunderstorm Creates Giant Wall of Dust

Reuters - US Online Video (July 26, 2014) A giant wall of dust slowly moves north over the Phoenix area after a summer monsoon thunderstorm. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Rare Lemur Among Baby Animals Debuted at Cleveland Zoo

Rare Lemur Among Baby Animals Debuted at Cleveland Zoo

Reuters - US Online Video (July 26, 2014) A rare baby Lemur is among several baby animals getting their public debut at a Cleveland zoo. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins