Featured Research

from universities, journals, and other organizations

Nanowrinkles, nanofolds yield strange hidden channels

Date:
December 12, 2011
Source:
Brown University
Summary:
Wrinkles and folds, common in nature, do something unusual at the nanoscale. Researchers have discovered that wrinkles on super-thin films have hidden long waves. The team also found that folds in the film produce nanochannels, like thousands of tiny subsurface pipes. The research could lead to advances in medicine, electronics and energy.

A subsurface system of nanopipes Researchers at Brown University and in Korea used focused ion beams to extract a cross-section of compressed gold nanofilm. When tips of regular, neighboring folds touched, nanopipes were created beneath the surface.
Credit: Kim Lab/Brown University

Wrinkles and folds, common in nature, do something unusual at the nanoscale. Researchers at Brown University and in Korea have discovered that wrinkles on super-thin films have hidden long waves. The team also found that folds in the film produce nanochannels, like thousands of tiny subsurface pipes. The research could lead to advances in medicine, electronics and energy.

Wrinkles and folds are ubiquitous. They occur in furrowed brows, planetary topology, the surface of the human brain, even the bottom of a gecko's foot. In many cases, they are nature's ingenious way of packing more surface area into a limited space. Scientists, mimicking nature, have long sought to manipulate surfaces to create wrinkles and folds to make smaller, more flexible electronic devices, fluid-carrying nanochannels or even printable cell phones and computers.

But to attain those technology-bending feats, scientists must fully understand the profile and performance of wrinkles and folds at the nanoscale, dimensions 1/50,000th the thickness of a human hair. In a series of observations and experiments, engineers at Brown University and in Korea have discovered unusual properties in wrinkles and folds at the nanoscale. The researchers report that wrinkles created on super-thin films have hidden long waves that lengthen even when the film is compressed. The team also discovered that when folds are formed in such films, closed nanochannels appear below the surface, like thousands of super-tiny pipes.

"Wrinkles are everywhere in science," said Kyung-Suk Kim, professor of engineering at Brown and corresponding author of the paper published in the journal Proceedings of the Royal Society A. "But they hold certain secrets. With this study, we have found mathematically how the wrinkle spacings of a thin sheet are determined on a largely deformed soft substrate and how the wrinkles evolve into regular folds."

Wrinkles are made when a thin stiff sheet is buckled on a soft foundation or in a soft surrounding. They are precursors of regular folds: When the sheet is compressed enough, the wrinkles are so closely spaced that they form folds. The folds are interesting to manufacturers, because they can fit a large surface area of a sheet in a finite space.

Kim and his team laid gold nanogranular film sheets ranging from 20 to 80 nanometers thick on a rubbery substrate commonly used in the microelectronics industry. The researchers compressed the film, creating wrinkles and examined their properties. As in previous studies, they saw primary wrinkles with short periodicities, the distance between individual wrinkles' peaks or valleys. But Kim and his colleagues discovered a second type of wrinkle, with a much longer periodicity than the primary wrinkles -- like a hidden long wave. As the researchers compressed the gold nanogranular film, the primary wrinkles' periodicity decreased, as expected. But the periodicity between the hidden long waves, which the group labeled secondary wrinkles, lengthened.

"We thought that was strange," Kim said.

It got even stranger when the group formed folds in the gold nanogranular sheets. On the surface, everything appeared normal. The folds were created as the peaks of neighboring wrinkles got so close that they touched. But the research team calculated that those folds, if elongated, did not match the length of the film before it had been compressed. A piece of the original film surface was not accounted for, "as if it had been buried," Kim said.

Indeed, it had been, as nano-size closed channels. Previous researchers, using atomic force microscopy that scans the film's surface, had been unable to see the buried channels. Kim's group turned to focused ion beams to extract a cross-section of the film. There, below the surface, were rows of closed channels, about 50 to a few 100 nanometers in diameter. "They were hidden," Kim said. "We were the first ones to cut (the film) and see that there are channels underneath."

The enclosed nano channels are important because they could be used to funnel liquids, from drugs on patches to treat diseases or infections, to clean water and energy harvesting, like a microscopic hydraulic pump.

Contributing authors include Jeong-Yun Sun and Kyu Hwan Oh from Seoul National University; Myoung-Woon Moon from the Korea Institute of Science and Technology; and Shuman Xia, a researcher at Brown and now at the Georgia Institute of Technology. The National Science Foundation, the Korea Institute of Science and Technology, the Ministry of Knowledge Economy of Korea, and the Ministry of Education, Science, and Technology of Korea supported the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.-Y. Sun, S. Xia, M.-W. Moon, K. H. Oh, K.-S. Kim. Folding wrinkles of a thin stiff layer on a soft substrate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011; DOI: 10.1098/rspa.2011.0567

Cite This Page:

Brown University. "Nanowrinkles, nanofolds yield strange hidden channels." ScienceDaily. ScienceDaily, 12 December 2011. <www.sciencedaily.com/releases/2011/11/111122230924.htm>.
Brown University. (2011, December 12). Nanowrinkles, nanofolds yield strange hidden channels. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/11/111122230924.htm
Brown University. "Nanowrinkles, nanofolds yield strange hidden channels." ScienceDaily. www.sciencedaily.com/releases/2011/11/111122230924.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins