Featured Research

from universities, journals, and other organizations

Drug may slow spread of deadly eye cancer

Date:
November 29, 2011
Source:
Washington University School of Medicine
Summary:
A drug commonly used to treat seizures appears to make eye tumors less likely to grow if they spread to other parts of the body, according to researchers.

A look at aggressive uveal melanoma cells under the microscope. These tumor calls carry the so-called "class 2 signature," meaning they are likely to be aggressive and spread outside of the eye.
Credit: J. William Harbour, MD

A drug commonly used to treat seizures appears to make eye tumors less likely to grow if they spread to other parts of the body, according to researchers at Washington University School of Medicine in St. Louis.

Their findings are available online in the journal Clinical Cancer Research.

Uveal melanoma, the second most common form of melanoma, can be very aggressive and spread, or metastasize, from the eye to other organs, especially the liver.

"Melanoma in general, and uveal melanoma in particular, is notoriously difficult to treat once it has metastasized and grown in a distant organ," says principal investigator J. William Harbour, MD. "We previously identified an aggressive class 2 molecular type of uveal melanoma that, in most cases, already has metastasized by the time the eye cancer is diagnosed, even though imaging the body can't detect it yet. This microscopic amount of cancer can remain dormant in the liver and elsewhere for several years before it begins to grow and becomes lethal."

Once this happens, the prospects for survival are poor, according to Harbour, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences and professor of cell biology and of molecular oncology. He also directs the Center for Ocular Oncology at the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

Harbour's new study shows that drugs known as histone deacetylase (HDAC) inhibitors alter the conformation of the DNA of the aggressive form of uveal melanoma, which changes the way key genes are expressed, rendering the tumor cells less aggressive.

"We looked at uveal melanoma cells in the laboratory and in an animal model, and we found that HDAC inhibitors can block the growth and proliferation of tumor cells," he says. "HDAC inhibitors appear to reverse the aggressive molecular signature that we had identified several years ago as a marker for metastatic death. When we look at aggressive melanoma cells under the microscope after treatment with HDAC inhibitors, they look more like normal cells and less like tumor cells."

Because HDAC inhibitors already are on the market, Harbour says he thinks it may be possible to quickly begin testing the drugs in patients with aggressive forms of uveal melanoma.

The drugs have relatively mild side effects that are not as severe as those seen in patients undergoing chemotherapy. One HDAC inhibitor, for example, is the anti-seizure drug valproic acid. Its most common side effect is drowsiness, which is typical of all HDAC inhibitors.

Clinical trials of HDAC inhibitors could begin in the next six to 12 months, Harbour says. Already, other researchers have applied for funding to begin testing an HDAC inhibitor called SAHA (suberoylanilide hydroxic acid) in patients with metastatic uveal melanoma.

"I think this is a reasonable place to start in the challenging effort to improve survival in patients with metastatic uveal melanoma," Harbour says. "I suspect that the best role for HDAC inhibitors will be to slow or prevent the growth of tumor cells that have spread out of the eye but cannot yet be detected. This might lengthen the time between the original eye treatment and the appearance of detectable cancer in the liver and elsewhere."

Like the chicken pox virus that lives for years in nerve cells without affecting health, Harbour says treatment with HDAC inhibitors may allow patients with aggressive melanomas to live for many years without any detectable spread of their disease.

Harbour and his colleagues previously developed a screening test to predict whether the cancer would be likely to spread to the liver and other parts of the body. The test is helpful because although less than 4 percent of patients with uveal melanoma have detectable metastatic disease, up to half will eventually die of metastasis even after successful treatment of the tumor with radiation, surgery, or, in the worst cases, removal of the eye.

Tumors that tend to remain contained within the eye are called class 1 uveal melanomas. With a needle biopsy, doctors can quickly determine whether a tumor is likely to be a class 1 cancer or whether it carries a molecular signature that identifies it as a high-risk, class 2 melanoma. Harbour's team developed a test to identify the class 2 molecular signature, and that test is now being used around the world to detect the aggressive form of uveal melanoma.

In addition, Harbour's team published a paper last year in the journal Science identifying a mutation in a gene called BAP-1 that helped further explain why some eye tumors develop the class 2 signature and acquire the ability to spread. Harbour explains that HDAC inhibitors appear to reverse some of the effects of BAP-1 mutations on the melanoma cell.

Funding for this research comes from a Fonds de la Recherche en Sante du Quebec Postdoctoral Training Award, the Alvin J. Siteman Cancer Center Summer Undergraduate Research Fellowship program, and the National Cancer Institute, the National Eye Institute the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health (NIH), and by the Horncrest Foundation and Research to Prevent Blindness.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. The original article was written by Jim Dryden. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Landreville, O. A. Agapova, K. A. Matatall, Z. T. Kneass, M. D. Onken, R. S. Lee, A. M. Bowcock, J. W. Harbour. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clinical Cancer Research, 2011; DOI: 10.1158/1078-0432.CCR-11-0946

Cite This Page:

Washington University School of Medicine. "Drug may slow spread of deadly eye cancer." ScienceDaily. ScienceDaily, 29 November 2011. <www.sciencedaily.com/releases/2011/11/111128171222.htm>.
Washington University School of Medicine. (2011, November 29). Drug may slow spread of deadly eye cancer. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/11/111128171222.htm
Washington University School of Medicine. "Drug may slow spread of deadly eye cancer." ScienceDaily. www.sciencedaily.com/releases/2011/11/111128171222.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins