Featured Research

from universities, journals, and other organizations

Researchers' new recipe cooks up better tissue 'phantoms'

Date:
December 1, 2011
Source:
Optical Society of America
Summary:
The precise blending of tiny particles and multicolor dyes transforms gelatin into a realistic surrogate for human tissue. These tissue mimics, known as "phantoms," provide an accurate proving ground for new photoacoustic and ultrasonic imaging technologies.

The precise blending of tiny particles and multicolor dyes transforms gelatin into a realistic surrogate for human tissue. These tissue mimics, known as "phantoms," provide an accurate proving ground for new photoacoustic and ultrasonic imaging technologies. "The ability to provide phantoms that are capable of mimicking desired properties of soft tissue is critical to advance the development of new, more-accurate imaging technologies," said Stanislav Emelianov of the University of Texas at Austin and co-author of a paper appearing in the Optical Society's (OSA) open-access journal Biomedical Optics Express that describes an improved method for fabricating tissue phantoms.

Ultrasonic imaging uses high-frequency acoustic pulses to probe the structure of tissues. Another technique, photoacoustic imaging, uses low-energy laser pulses to create tiny acoustic waves that propagate through tissues. Certain tissues and materials (e.g. blood, nanoparticles used in certain tests, and fluorescent dyes), however, readily absorb the optical wavelengths typically used in photoacoustic imaging. By combining acoustic and photoacoustic imaging techniques, it's possible to create a more comprehensive picture of soft tissues. Designing effective imaging devices that can concurrently harness these two technologies, however, requires true-to-life phantoms. Emelianov and his colleagues have met this need by designing and testing a novel combination of additives that enable gelatin to acquire acoustical and optical properties that accurately match soft tissue in humans.

To match the acoustical properties, the researchers added 40-micron silica spheres to the gelatin. These particles help scatter the acoustical signal, matching the behavior of normal tissue. An emulsion of fat was also used to attenuate, or absorb, the acoustical signal. The fat additive also enhanced optical scattering of the mixture. The final ingredients were commercial dyes -- India ink, Direct Red 81, and Evans blue -- which provided similar optical absorption to natural tissues.

"These combined characteristics are of particular value because of the growing use of combined ultrasonic and photoacoustic imaging in clinical and preclinical research," says Emelianov. "Furthermore, there has been increased interest in utilizing these combined technologies in clinical applications, such as vascular imaging, lymph node assessment, and atherosclerotic plaque characterization."


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jason R. Cook, Richard R. Bouchard, Stanislav Y. Emelianov. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomedical Optics Express, 2011; 2 (11): 3193 DOI: 10.1364/BOE.2.003193

Cite This Page:

Optical Society of America. "Researchers' new recipe cooks up better tissue 'phantoms'." ScienceDaily. ScienceDaily, 1 December 2011. <www.sciencedaily.com/releases/2011/11/111130115816.htm>.
Optical Society of America. (2011, December 1). Researchers' new recipe cooks up better tissue 'phantoms'. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2011/11/111130115816.htm
Optical Society of America. "Researchers' new recipe cooks up better tissue 'phantoms'." ScienceDaily. www.sciencedaily.com/releases/2011/11/111130115816.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins