Featured Research

from universities, journals, and other organizations

Amplification of multiple cell-growth genes found in some brain tumors

Date:
December 2, 2011
Source:
Massachusetts General Hospital
Summary:
A small percentage of the deadly brain tumors called glioblastomas, which usually resist treatment with drugs targeting mutations in cell-growth genes, appears to contain extra copies of two or three of these genes at the same time. The surprising discovery has major implications for the understanding of tumor biology – including the evolution of tumor cell populations – and for targeted cancer therapies.

A small percentage of the deadly brain tumors called glioblastomas, which usually resist treatment with drugs targeting mutations in cell-growth genes, appears to contain extra copies of two or three of these genes at the same time. The surprising discovery by a Massachusetts General Hospital (MGH)-based research team has major implications for the understanding of tumor biology -- including the evolution of tumor cell populations -- and for targeted cancer therapies.

"We found that about 5 percent of glioblastomas contain amplification of multiple receptor tyrosine kinase genes -- specifically EGFR, MET and PDGFA -- in intermingled mosaic subpopulations of cells," says John Iafrate, MD, PhD, of the MGH Department of Pathology and MGH Cancer Center, corresponding author of the report appearing in the Dec. 13 issue of Cancer Cell. "Although it's been known that about 50 percent of glioblastomas have amplifications or mutations of one of these genes, clinical trials using tyrosine kinase inhibitors have had largely disappointing results, which may be explained in part by this previously unreported co-amplification."

To better understand the role of tyrosine kinase amplification in glioblastoma -- both to identify treatment targets and explain treatment resistance -- the research team began by mining data from glioblastoma cases collected by the Cancer Genome Atlas, an NIH-sponsored project designed to analyze, characterize and chart all the genomic changes in more than 20 types of cancer. In addition to replicating previous reports of tyrosine kinase amplification in about half the tumors analyzed -- most frequently EGFR, MET and PDGFA, mutations of which are associated with several forms of cancer -- the researchers also identified 13 cases in which two or three tyrosine kinases were co-amplified.

To further pursue this observation, they screened 350 glioblastoma samples compiled by the MGH Department of Pathology for amplification of those three genes and found extra copies of two or three genes in 16 cases. They also found that amplification of multiples gene did not occur in individual cells but that subpopulations of cells -- some with extra copies of one gene, some with another -- were intermingled throughout the tumors forming a mosaic pattern. Additional testing revealed that each subpopulation was actively proliferating and contributing to tumor growth. Detailed genetic analysis found that different subpopulations within a particular tumor shared other gene mutations, indicating they had originated from the same precursor cells. Mapping the location of different subpopulations in the brain of a glioblastoma patient suggested that each subpopulation may serve a different function in the growth and spread of the tumor.

"This new type of genetic variation within a tumor has not been described before -- probably because of the technical limitations of whole genome analysis," says Iafrate, an associate professor of Pathology at Harvard Medical School. "We now need to perform functional experiments to explore interactions between subpopulations within a tumor and determine to what extent this may occur in other types of tumors. We are also beginning laboratory experiments to investigate combining multiple tyrosine kinase inhibitors for glioblastoma treatment."

Matija Snuderl, MD, and Ladan Fazlollai, MD, of the MGH Department of Pathology are co-lead authors of the Cancer Cell article. Additional co-authors are Long Le, MD, PhD, Mai Nitta, Boryana Zhelyazkova, Christian Davidson, MD, Sara Akhavanfard, MD, and David Louis, MD, MGH Pathology; Daniel Cahill MD, PhD, and Kenneth Aldape, MD; M.D. Anderson Cancer Center, and Rebecca Betensky, Harvard School of Public Health.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matija Snuderl, Ladan Fazlollahi, Long P. Le, Mai Nitta, Boryana H. Zhelyazkova, Christian J. Davidson, Sara Akhavanfard, Daniel P. Cahill, Kenneth D. Aldape, Rebecca A. Betensky et al. Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma. Cancer Cell, 01 December 2011 DOI: 10.1016/j.ccr.2011.11.005

Cite This Page:

Massachusetts General Hospital. "Amplification of multiple cell-growth genes found in some brain tumors." ScienceDaily. ScienceDaily, 2 December 2011. <www.sciencedaily.com/releases/2011/12/111201125149.htm>.
Massachusetts General Hospital. (2011, December 2). Amplification of multiple cell-growth genes found in some brain tumors. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/12/111201125149.htm
Massachusetts General Hospital. "Amplification of multiple cell-growth genes found in some brain tumors." ScienceDaily. www.sciencedaily.com/releases/2011/12/111201125149.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins