Featured Research

from universities, journals, and other organizations

Aging human bodies and aging human oocytes run on different clocks

Date:
December 9, 2011
Source:
American Society for Cell Biology
Summary:
Reproductive and somatic aging use different molecular mechanisms that show little overlap between the types of genes required to keep oocytes healthy and the genes that generally extend life span, according to new research.

Reproductive and somatic aging use different molecular mechanisms that show little overlap between the types of genes required to keep oocytes healthy and the genes that generally extend life span, according to Coleen Murphy, Ph.D., of Princeton University, who described her new findings on oocyte aging at the American Society for Cell Biology Annual Meeting Dec. 6 in Denver.

Related Articles


The different genetic pathways help explain why a woman's fertility begins to decline after she is 35 years old, while her other cells do not show significant signs of aging until decades later, Murphy explained.

To compare the molecular mechanisms that are switched on or off with the aging of oocytes and somatic cells, Murphy's lab turned to the model organism, Caenorhabditis elegans (C. elegans), the worm-like nematode that set off the whole field of longevity research with the discovery in the 1990s that gene mutations affecting insulin regulation doubled the worm's life span. Insulin/insulin-like growth factor (insulin/IGF) signaling pathways also have been identified in humans. These pathways also seem to regulate longevity in humans.

Using DNA microarrays to measure the expression levels of genes, Dr. Murphy and her colleagues noted a distinctive DNA signature for aging oocytes. They also found that the oocytes of aging insulin and transforming growth factor-beta (TGF-beta) mutant mice had the same DNA profile that characterized young females.

The researchers then compared the oocyte gene expression patterns with microarray transcription data on worms carrying the famous long-life mutations. Murphy and her colleagues found that even though somatic and reproductive aging in C. elegans both involve the insulin regulation pathway, the molecular mechanisms to maintain youthful oocyte function and to combat body aging are very different.

"It seems that maintaining protein and cell quality is the most important component of somatic longevity in worms," Dr. Murphy said, "while chromosomal/DNA integrity and cell cycle control are the most critical factors for oocyte health."

In previous studies, the Murphy lab showed that worm oocytes reach the end of their viability about halfway through the C. elegans lifespan, a pattern that also characterizes human eggs. Oocyte aging is delayed in mutant worms with decreased signaling activity in both the insulin/IGF and the TGF-beta pathways.

Using microarray technology, Murphy's lab identified the C. elegans genes that were being switched on or off as oocytes aged. The researchers revealed a distinctive genetic signature for aging oocytes that is reversed in insulin and TGF-beta mutants.

They then compared the oocyte gene expression patterns with microarray transcription data from whole worms carrying the famous long-life mutations.

Surprisingly, the patterns were different. Even though somatic and reproductive aging in C. elegans both involve the insulin regulation pathway, the mechanisms to maintain youthful oocyte function and to combat body aging are very different.

"It seems that maintaining protein and cell quality is the most important component of somatic longevity in worms," Murphy said, "while chromosomal/DNA integrity and cell cycle control are the most critical factors for oocyte health."

Finding ways to delay oocyte aging would reduce an older woman's risk of giving birth to a child with birth defects, Murphy said.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Cell Biology. "Aging human bodies and aging human oocytes run on different clocks." ScienceDaily. ScienceDaily, 9 December 2011. <www.sciencedaily.com/releases/2011/12/111206131440.htm>.
American Society for Cell Biology. (2011, December 9). Aging human bodies and aging human oocytes run on different clocks. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/12/111206131440.htm
American Society for Cell Biology. "Aging human bodies and aging human oocytes run on different clocks." ScienceDaily. www.sciencedaily.com/releases/2011/12/111206131440.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins