Featured Research

from universities, journals, and other organizations

Shampoo formulation puzzle solved

Date:
December 12, 2011
Source:
Institut Laue-Langevin (ILL)
Summary:
A research team has demonstrated quantitatively the science behind an anomaly in the surface tension of polyelectrolyte/surfactant mixtures. Their findings show that the dramatic increase in surface tension that affects the production of various pharmaceutical and cosmetic formulations is caused by the comprehensive aggregation of active ingredients. They have outlined a way to reload interfaces with functional components simply by tuning the way the materials are handled.

A research team at the Institut Laue-Langevin, the flagship centre for neutron science, has demonstrated quantitatively the science behind an anomaly in the surface tension of polyelectrolyte/surfactant mixtures. Their findings show that the dramatic increase in surface tension that affects the production of various pharmaceutical and cosmetic formulations is caused by the comprehensive aggregation of active ingredients. They have outlined a way to reload interfaces with functional components simply by tuning the way the materials are handled.

Related Articles


Surface tension is a property of liquids resulting from the cohesion of their molecules that helps them resist an external force. It is responsible for the shape of liquid droplets and the reason why insects can run on the surface of ponds.

Surfactants are substances that lower the surface tension of a liquid and can capture other substances, such as oil or grease in cleaning products. They are often combined with polyelectrolytes, made of long charged molecules, to improve the efficiency of detergents, wetting agents, emulsifiers, foaming agents, and dispersants in paints, shampoos and conditioners, and are used throughout the food industry. Also, the strong attractive interactions of surfactants with natural polyelectrolytes, such as proteins or DNA, play an important role in many biological processes, as well as in medical applications, such as drug and gene delivery.

The commercial production and performance of polyelectrolyte/surfactant mixtures, however, is affected by a peculiar phenomenon, first investigated in depth a decade ago. Whilst adding a surfactant to a polyelectrolyte solution initially causes the surface tension to decrease, as further surfactant is added the surface tension dramatically increases again. This feature, known as a 'cliff edge peak', is accompanied by a change in the appearance of the mixture, with the eventual loss of the cloudiness that is present as soon as the materials first interact.

From an industrial production point of view, this rise in surface tension reduces the performance of the additive, often requiring the introduction of further surfactant at extra cost. As a result, there is a lot of interest in understanding the interactions between these mixtures at the atomic level both in solutions and at surfaces. Of particular interest are the primary causes of the cliff edge peak and ways to prevent, lessen or delay its effects that could lead to more efficient formulations and reduce the effects of many pollutants in our environment.

To investigate this problem, Dr Richard Campbell (Institut Laue-Langevin), Dr Imre Varga (Eφtvφs-Lorαnd University, Hungary) and their co-workers looked at a system studied widely in the literature -- an oppositely charged poly (diallyldimethylammonium chloride)/sodium dodecyl sulfate (Pdadmac/SDS) system.

The international research team, which also includes members from the UK and Sweden, used neutron reflectometry, a reflection technique used for measuring the composition and structure of thin films, to monitor the surface properties with respect to the slow generation of the cliff edge peak. The instrument used was the brand new FIGARO reflectometer (Fluid Interfaces Grazing Angles ReflectOmeter) at the Institut Laue-Langevin, which was constructed during the Institute's innovative Millennium Programme. The researchers showed quantitatively for the first time that this striking feature in the surface tension results from the slow precipitation of particles into sediment from the aqueous solution. The precipitation depletes the solution and consequently the surface of its active ingredients, and also accounts for the loss of cloudiness observed.

As well as uncovering the reasons behind the rise in surface tension, the team were also keen to investigate methods to prevent its impact, which could directly benefit commercial applications. In the literature, researchers have suggested that the way these mixtures are handled could affect the nature of the material in the solution -- a phenomenon called "non-equilibrium effects."

To test whether the re-dispersion of surface-active material could actually switch off the cliff edge peak effect, the team carefully agitated a series of mixtures after the settling process had finished. A small mechanical stress provided just enough energy to re-disperse some of the sedimented particles and re-supplied the air/liquid interface with enough material to lower the surface tension once again.

"By approaching the problem in a different way, we have shown that the way you handle polyelectrolyte/surfactant systems can produce a variety of tuneable surface properties," says Dr Richard Campbell. "We hope that our findings will allow future industrial chemists across the pharmaceutical, detergency and cosmetic industries to generate better product output from their raw materials by learning to handle them in a smarter way, and create optimum surface properties on demand, rather than simply buying in more material to improve performance."

There is hope also that this work can lead on to novel drug or gene delivery applications where one could apply an external stimulus to a stable biomacromolecule system in order to trigger the delivery of proteins or DNA to a given target.


Story Source:

The above story is based on materials provided by Institut Laue-Langevin (ILL). Note: Materials may be edited for content and length.


Journal Reference:

  1. Richard A. Campbell, Marianna Yanez Arteta, Anna Angus-Smyth, Tommy Nylander, Imre Varga. Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium Chloride)/Sodium Dodecyl Sulfate at the Air–Water Interface Studied by Neutron Reflectometry. The Journal of Physical Chemistry B, 2011; 111207090332005 DOI: 10.1021/jp2088803

Cite This Page:

Institut Laue-Langevin (ILL). "Shampoo formulation puzzle solved." ScienceDaily. ScienceDaily, 12 December 2011. <www.sciencedaily.com/releases/2011/12/111209123106.htm>.
Institut Laue-Langevin (ILL). (2011, December 12). Shampoo formulation puzzle solved. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/12/111209123106.htm
Institut Laue-Langevin (ILL). "Shampoo formulation puzzle solved." ScienceDaily. www.sciencedaily.com/releases/2011/12/111209123106.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) — US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins