Featured Research

from universities, journals, and other organizations

Slow road to stability for emulsions

Date:
December 11, 2011
Source:
Harvard School of Engineering and Applied Sciences
Summary:
Physical equilibrium, assumed to be almost instant, may take months or years for particles in oil-water mixtures. By studying the behavior of tiny particles at an interface between oil and water, researchers have discovered that stabilized emulsions may take longer to reach equilibrium than previously thought.

False-color hologram. This hologram (false color added) displays the three-dimensional location of the polystyrene particles in a two-dimensional image.
Credit: Courtesy of Ryan McGorty

By studying the behavior of tiny particles at an interface between oil and water, researchers at Harvard have discovered that stabilized emulsions may take longer to reach equilibrium than previously thought.

Much longer, in fact.

"We were looking at what we thought would be a very simple phenomenon, and we found something very strange," says principal investigator Vinothan Manoharan, Associate Professor of Chemical Engineering and Physics at the Harvard School of Engineering and Applied Sciences (SEAS).

"We knew that the particle would stick to the interface, and other researchers had assumed this event happened instantaneously," he says. "We actually found that the timescale for this process was months to years."

The findings, published in Nature Materials (online) on December 4, have important implications for the manufacturing processes used in pharmaceuticals, cosmetics, and foods, among other chemical industries.

An emulsion is a mixture of two or more insoluble liquids -- usually oil and water. A simple emulsion like vinaigrette takes energy to create (for example, by shaking it), and over time it will separate out, as the oil or water molecules cluster together again.

To give products like mayonnaise and sunscreen a reasonable shelf life, manufacturers typically add stabilizing particles to create Pickering emulsions. Ice cream, for example, is stabilized by tiny ice crystals that cling to the interfaces between the fat and water droplets, creating a rigid physical barrier between the two. In traditional mayonnaise, proteins from the egg yolk perform the same role.

When the oil and water in these types of emulsions are completely mixed and stable, the particles are said to be at equilibrium.

"There are certain rules for making different types of emulsions," explains Manoharan. "For example, do you get oil droplets in water, or water droplets in oil? The conventional rules are based on the properties of the materials, but our results suggest that it also has to do with time and the energy you put into the system."

To study Pickering emulsions, Manoharan and his colleagues used holography to gain a three-dimensional view of microscopic polystyrene balls while they approached an interface between oil and water. The researchers used light from a focused laser (optical tweezers) to gently push a particle toward the interface, hoping to watch it settle into its predicted equilibrium point, straddling the oil-water boundary.

To their surprise, none of the particles reached equilibrium during the experimental timeframe. Instead, they breached the interface quickly, but then slowed down more and more as they crossed into the oil. Mathematically extrapolating the logarithmic behavior they did observe, Manoharan's team discovered that the particles would stabilize on a time frame much longer than anyone had predicted.

"Our experiments only went on for a few minutes, but for the system to reach equilibrium would take at least weeks to months, and possibly years," explains lead author David Kaz, Ph.D. '11, who earned his degree in physics at Harvard's Graduate School of Arts and Sciences.

The finding is unlikely to affect any time-tested culinary recipes, but many other applications rely on very precise predictions of the particles' behavior.

In biomedical engineering, for example, Pickering emulsions are used to create colloidosomes -- microscale capsules that could deliver precise concentrations of drugs to specific targets in the human body. Understanding the behavior of particles at liquid interfaces is also relevant to many aspects of chemical engineering, water purification, mineral recovery techniques, and the manufacture of nanostructured materials.

The new research suggests that the models currently used to predict and optimize these systems may be too simplistic.

"It has always been assumed that the particles moved almost instantly to their equilibrium contact angle or height, and then Young's law would apply," says co-author Michael Brenner, Glover Professor of Applied Mathematics and Applied Physics at SEAS. "What we found, though, is that equilibrium might take much, much longer to achieve than the time scale at which you're using your product."

"If you're really stirring hard, maybe you can get the particles to reach equilibrium faster," Brenner adds, "But what we're saying is that the process matters."

Co-authors Ryan McGorty (Ph.D. '11, physics) and Madhav Mani (Ph.D. '10, applied mathematics), also contributed to the research, which was funded by the National Science Foundation (NSF) and the NSF-supported Materials Research Science and Engineering Center at Harvard.


Story Source:

The above story is based on materials provided by Harvard School of Engineering and Applied Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. David M. Kaz, Ryan McGorty, Madhav Mani, Michael P. Brenner, Vinothan N. Manoharan. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Materials, 2011; DOI: 10.1038/nmat3190

Cite This Page:

Harvard School of Engineering and Applied Sciences. "Slow road to stability for emulsions." ScienceDaily. ScienceDaily, 11 December 2011. <www.sciencedaily.com/releases/2011/12/111209123110.htm>.
Harvard School of Engineering and Applied Sciences. (2011, December 11). Slow road to stability for emulsions. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/12/111209123110.htm
Harvard School of Engineering and Applied Sciences. "Slow road to stability for emulsions." ScienceDaily. www.sciencedaily.com/releases/2011/12/111209123110.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins