Featured Research

from universities, journals, and other organizations

How exposure to irregular light affects plant circadian rhythms

Date:
December 21, 2011
Source:
American Society for Horticultural Science
Summary:
A study of chrysanthemum investigated plants' circadian responses to interruptions in light cycles. Plants were exposed to irregular supplemental light breaks during the night; results showed a correlation between circadian-regulated processes and plant growth. Leaves and stems grew faster in plants grown in short days with irregular light breaks during the night compared with plants grown in a climate with a consecutive long light period. The findings could contribute to energy savings in production greenhouses.

Scientists know that plants can actually "sense" day length, and "schedule" their growth to coincide with specific environmental conditions. These natural events are based on the circadian clock, a 24-hour system found in most biochemical and physiological processes. Plants grow better in circadian conditions that correspond to natural environments, but until now researchers have not understood how plants' internal circadian clocks respond to irregular lighting environments such as those found in many greenhouses.

Greenhouses in northern latitudes rely heavily on supplemental light sources to extend the number of light hours during the day. To conserve electricity and lower costs, newer low-energy input systems use lights only during less expensive off-peak hours and turn lighting off during peak load periods in the afternoon and in the morning. These systems, though more cost-effective than conventional lighting methods, create irregular lighting patterns of natural sunlight interrupted with artificial lighting -- a challenge for both growers and plants.

Danish scientists Katrine Heinsvig Kjaer and Carl-Otto Ottosen from the Department of Horticulture at Aarhus University published a study in a recent issue of the Journal of the American Society for Horticultural Science that sheds light on the question of plants' response to interruptions in lighting cycles. "Circadian rhythms are believed to be of great importance to plant growth and performance under fluctuating climate conditions. However, it has not been known how plants with a functioning circadian clock respond to irregular light environments that disturb circadian-regulated parameters related to growth," they explained.

For their experiments, the team used 300 cuttings of chrysanthemum (Chrysanthemum morifolium 'Coral Charm') grown in 19 hours of light for 2 weeks. The plants were then randomly placed in either of two greenhouse compartments with similar temperatures and carbon (CO2) concentration. "The plants were exposed to supplemental light provided as irregular light breaks during the night, which we achieved by controlling the light based on forecasted solar irradiance and electricity prices', explained the authors. "Growth, in terms of carbon gain, was linearly correlated to both day length and daily light integral."

The scientists observed that chrysanthemum plants grown in short days with irregular light breaks during the night showed more rapid leaf development and stem growth than plants grown in a climate with a consecutive long light period, proving that low average light intensity promotes expansion of the photosynthetic area of the plants. Though the experiments showed that irregular light periods disturb circadian rhythm and induce changes in leaf characteristics, the authors noted that the study also proved that plants can naturally adapt to irregular light periods.

Kjaer and Ottosen say their research should help greenhouse operators realize energy savings in the area of supplemental light usage.


Story Source:

The above story is based on materials provided by American Society for Horticultural Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katrine Heinsvig Kjaer And Carl-Otto Ottosen. Growth of Chrysanthemum in Response to Supplemental Light Provided by Irregular Light Breaks during the Night. JASHS, January 2011 vol. 136 no. 1 3-9 [link]

Cite This Page:

American Society for Horticultural Science. "How exposure to irregular light affects plant circadian rhythms." ScienceDaily. ScienceDaily, 21 December 2011. <www.sciencedaily.com/releases/2011/12/111214135810.htm>.
American Society for Horticultural Science. (2011, December 21). How exposure to irregular light affects plant circadian rhythms. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/12/111214135810.htm
American Society for Horticultural Science. "How exposure to irregular light affects plant circadian rhythms." ScienceDaily. www.sciencedaily.com/releases/2011/12/111214135810.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com
California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins