Featured Research

from universities, journals, and other organizations

Research on solubility yields promise for pharmaceutical, other industries

Date:
December 19, 2011
Source:
Hebrew University of Jerusalem
Summary:
A method for increasing solubility (the ability of one substance to dissolve into another), developed by a graduate student has yielded promising commercial benefits for industry, particularly in pharmaceuticals, cosmetics and agriculture.

A method for increasing solubility (the ability of one substance to dissolve into another), developed by a graduate student at the Hebrew University of Jerusalem Casali Institute of Applied Chemistry, has yielded promising commercial benefits for industry, particularly in pharmaceuticals, cosmetics and agriculture.

The method, developed by Katy Margulis-Goshen, a Ph.D. student of Prof. Shlomo Magdassi, produces a rapid conversion of oil-in-water microemulsions, containing an insoluble substance, into a dry powder composed of nanoparticles which can easily be dissolved in water or other biological fluids.

For her work, Marguis-Goshen, who immigrated to Israel from the Ukraine in 1990, was chosen as one of the winners of this year's Kaye Innovation Awards at the university.

The process she developed is of unique industrial importance, since it leads to a significant increase in solubility and dissolution properties of almost any active ingredient, without a high energy investment.

Enhancing such solubility is especially important in the field of pharmaceutics, where nearly 50% of the newly discovered drugs cannot be administered or are very poorly absorbed due to their low solubility. Increasing solubility is also important in the field of agriculture, since the majority of insecticides are highly hydrophobic (resistant to mixing with water), and their regular application therefore requires the use of organic solvents, which are harmful to the farmer and the environment.

In cosmetics, active cosmetic ingredients for dermal delivery are usually also water resistant, so that incorporating them into non-greasy, water-based formulations is of great importance.

The new process invented by Margulis-Goshen can be also applied in many other fields, such as nutrition and the manufacture of printing ink and paint.

If the active ingredient, for example, is a water-resistant drug, the powder developed in her method may be injected or incorporated into capsules, tablets and other fast-dissolving drug formulations. Such dosage forms have shown a tremendous increase in dissolution rate in water and biological fluids. They are expected to improve bioavailability of the drug, minimize its side effects by reducing the total dose needed, and allow drug targeting. A very significant improvement in drug dissolution has been shown in this way in tests with three drugs.

Similar beneficial results have been shown in applying the invention to the conversion of hydrophobic pesticides into a powder, allowing a reduction of at least six times in the effective concentration of the pesticide with utilization of water instead of organic solvents as the dispersing medium. In cosmetics, the powder containing active cosmetic ingredient may be incorporated into new, stable, water-based formulations.


Story Source:

The above story is based on materials provided by Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Cite This Page:

Hebrew University of Jerusalem. "Research on solubility yields promise for pharmaceutical, other industries." ScienceDaily. ScienceDaily, 19 December 2011. <www.sciencedaily.com/releases/2011/12/111215094919.htm>.
Hebrew University of Jerusalem. (2011, December 19). Research on solubility yields promise for pharmaceutical, other industries. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2011/12/111215094919.htm
Hebrew University of Jerusalem. "Research on solubility yields promise for pharmaceutical, other industries." ScienceDaily. www.sciencedaily.com/releases/2011/12/111215094919.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins