Featured Research

from universities, journals, and other organizations

Quantum cats are hard to see: Researchers explain the difficulty of detecting quantum effects

Date:
December 22, 2011
Source:
University of Calgary
Summary:
Researchers can explain why we don't usually see the physical effects of quantum mechanics.

Are there parallel universes? And how will we know? This is one of many fascinations people hold about quantum physics. Researchers from the universities of Calgary and Waterloo and the University of Geneva in Switzerland have published a paper in Physical Review Letters explaining why we don't usually see the physical effects of quantum mechanics.

Related Articles


"Quantum physics works fantastically well on small scales but when it comes to larger scales, it is nearly impossible to count photons very well. We have demonstrated that this makes it hard to see these effects in our daily life," says Christoph Simon, who teaches in the physics and astronomy department and is one of the lead authors of the paper entitled: Coarse-graining makes it hard to see micro-macro entanglement.

It's well known that quantum systems are fragile. When a photon interacts with its environment, even just a tiny bit, the superposition is destroyed. Superposition is a fundamental principle of quantum physics that says that systems can exist in all their possible states simultaneously. But when measured, only the result of one of the states is given.

This effect is known as decoherence and it has been studied intensively over the last few decades. The idea of decoherence as a thought experiment was raised by Erwin Schrödinger, one of the founding fathers of quantum physics, in his famous cat paradox: a cat in a box can be both dead and alive at the same time.

But, according to the authors of this study, it turns out that decoherence is not the only reason why quantum effects are hard to see. Seeing quantum effects requires extremely precise measurements. Simon and his team studied a concrete example for such a "cat" by using a particular quantum state involving a large number of photons.

"We show that in order to see the quantum nature of this state, one has to be able to count the number of photons in it perfectly," says Simon. "This becomes more and more difficult as the total number of photons is increased. Distinguishing one photon from two photons is within reach of current technology, but distinguishing a million photons from a million plus one is not."


Story Source:

The above story is based on materials provided by University of Calgary. The original article was written by Leanne Yohemas. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sadegh Raeisi, Pavel Sekatski, Christoph Simon. Coarse Graining Makes It Hard to See Micro-Macro Entanglement. Physical Review Letters, 2011; 107 (25) DOI: 10.1103/PhysRevLett.107.250401

Cite This Page:

University of Calgary. "Quantum cats are hard to see: Researchers explain the difficulty of detecting quantum effects." ScienceDaily. ScienceDaily, 22 December 2011. <www.sciencedaily.com/releases/2011/12/111216150305.htm>.
University of Calgary. (2011, December 22). Quantum cats are hard to see: Researchers explain the difficulty of detecting quantum effects. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2011/12/111216150305.htm
University of Calgary. "Quantum cats are hard to see: Researchers explain the difficulty of detecting quantum effects." ScienceDaily. www.sciencedaily.com/releases/2011/12/111216150305.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) — A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Amplifying Tiny Movements to Visualize the Invisible

Amplifying Tiny Movements to Visualize the Invisible

Reuters - Innovations Video Online (Jan. 28, 2015) — A new video recording method that amplifies seemingly invisible motion could lead to a touch-free vital signs monitor, and offer a new tool for engineers to gauge stresses on bridges and tunnels in real time. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Boeing's Profit Soars

Boeing's Profit Soars

Reuters - Business Video Online (Jan. 28, 2015) — Boeing delivered more commercial planes, especially 737s and 787s, fueling profit. But it issued a mixed outlook. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Robot Replacements for Foxconn's Workers

Robot Replacements for Foxconn's Workers

Reuters - Business Video Online (Jan. 28, 2015) — Foxconn parent Hon Hai Precision Industry is looking to automation to keep productivity up without the rising costs of human labor. Meg Teckman reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins