Featured Research

from universities, journals, and other organizations

Towards artificial photosynthesis for solar hydrogen generation: Algal protein gives boost to electrochemical water splitting

Date:
December 20, 2011
Source:
Empa
Summary:
Water splitting in photo-electrochemical cells to yield hydrogen is a promising way to sustainable fuels. Scientists have now made major progress in developing highly efficient electrodes – made of an algal protein, thus mimicking a central step in natural photosynthesis.

Hematite nanoparticle film (red) with functional phycocyanin network (green) attached.
Credit: Dr. E. Vitol, Argonne National Laboratory

Photosynthesis is considered the "Holy Grail" in the field of sustainable energy generation because it directly converts solar energy into storable fuel using nothing but water and carbon dioxide (CO2). Scientists have long tried to mimic the underlying natural processes and to optimize them for energy device applications such as photo-electrochemical cells (PEC), which use sunlight to electrochemically split water -- and thus directly generate hydrogen, cutting short the more conventional approach using photovoltaic cells for the electrolysis of water.

Traditionally, PEC electrodes are made of semiconducting materials such as metal oxides, some of which are also known for their photocatalytic properties. For quite some time, researchers at Empa's Laboratory for High Performance Ceramics (LHPC) have been investigating nanoparticles of these materials, for instance titanium dioxide (TiO2), for the neutralization of organic pollutants in air and water. Collaborating with colleagues at the University of Basel and at Argonne National Laboratory in the US, they now succeeded in making a nano-bio PEC electrode, consisting of iron oxide conjugated with a protein from blue-green algae (also known as cyanobacteria), which is twice as efficient in water splitting as iron oxide alone.

Inspired by photosynthesis

Iron oxide, in particular hematite (a-Fe2O3), is a promising electrode material for PEC because it is susceptible to visible wavelengths and thus uses sunlight more efficiently than photocatalysts like TiO2, which can only use the UV part of solar radiation. What's more, hematite is a low-cost and abundant material.

The second ingredient in the novel electrode "recipe" is phycocyanin, a protein from blue-green algae. "I was inspired by the natural photosynthetic machinery of cyanobacteria where phycocyanin acts as a major light-harvesting component. I wanted to make artificial photosynthesis using ceramics and proteins," recalls Debajeet K. Bora who designed the new electrode during his PhD thesis at Empa. "The concept of hematite surface functionalization with proteins was completely novel in PEC research."

After Bora covalently cross-coupled phycocyanin to hematite nanoparticles that had been immobilized as a thin film, the conjugated hematite absorbed many more photons than without the algal protein. In fact, the induced photocurrent of the hybrid electrode was doubled compared to a "normal" iron oxide electrode.

One tough cookie

Somewhat surprisingly, the light harvesting protein complex does not get destroyed while in contact with a photocatalyst in an alkaline environment under strong illumination. Chemists would have predicted the complete denaturation of biomolecules under such corrosive and aggressive conditions. "Photocatalysts are designed to destroy organic pollutants, which are a burden to the environment. But here we have a different situation," says Artur Braun, group leader at Empa's LHPC and principal investigator of the study. "There seems to be a delicate balance where organic molecules not only survive harsh photocatalytic conditions, but even convey an additional benefit to ceramic photocatalysts: They double the photocurrent. This is a big step forward."

The project was fully funded by the Swiss Federal Office of Energy (SFOE). Bora who will soon have completed his PhD thesis says he will continue what he started at Empa during a postdoc at the University of California, Berkeley, which he will assume early next year.


Story Source:

The above story is based on materials provided by Empa. Note: Materials may be edited for content and length.


Journal Reference:

  1. Debajeet K. Bora, Elena A. Rozhkova, Krisztina Schrantz, Pradeep P. Wyss, Artur Braun, Thomas Graule, Edwin C. Constable. Functionalization of Nanostructured Hematite Thin-Film Electrodes with the Light-Harvesting Membrane Protein C-Phycocyanin Yields an Enhanced Photocurrent. Advanced Functional Materials, 2011; DOI: 10.1002/adfm.201101830

Cite This Page:

Empa. "Towards artificial photosynthesis for solar hydrogen generation: Algal protein gives boost to electrochemical water splitting." ScienceDaily. ScienceDaily, 20 December 2011. <www.sciencedaily.com/releases/2011/12/111219112010.htm>.
Empa. (2011, December 20). Towards artificial photosynthesis for solar hydrogen generation: Algal protein gives boost to electrochemical water splitting. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2011/12/111219112010.htm
Empa. "Towards artificial photosynthesis for solar hydrogen generation: Algal protein gives boost to electrochemical water splitting." ScienceDaily. www.sciencedaily.com/releases/2011/12/111219112010.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins