Featured Research

from universities, journals, and other organizations

Colorado mountain hail may disappear in a warmer future

Date:
January 12, 2012
Source:
University of Colorado Boulder
Summary:
Summertime hail could all but disappear from the eastern flank of Colorado's Rocky Mountains by 2070, according to a new modeling study. Less hail damage could be good news for gardeners and farmers, but a shift from hail to rain can also mean more runoff, which could raise the risk of flash floods, she said.

Summertime hail could all but disappear from the eastern flank of Colorado's Rocky Mountains by 2070, according to a new modeling study by scientists from NOAA and several other institutions. Lead author of the new study, NOAA's Kelly Mahoney, holds hailstones from a July 2011 storm in Boulder.
Credit: Kelly Mahoney, NOAA

Summertime hail could all but disappear from the eastern flank of Colorado's Rocky Mountains by 2070, says a new study by the National Oceanic and Atmospheric Administration, the University of Colorado Boulder's Cooperative Institute for Research in Environmental Sciences and the National Center for Atmospheric Research.

Related Articles


Less hail damage could be good news for gardeners and farmers, said lead author Kelly Mahoney, a research scientist at CIRES, but a shift from hail to rain can also mean more runoff, which could raise the risk of flash floods. "In this region of elevated terrain, hail may lessen the risk of flooding because it takes awhile to melt," Mahoney said. "Decision makers may not want to count on that in the future."

For the new study, published this week in the journal Nature Climate Change, Mahoney and her colleagues used "downscaling" techniques to try to understand how climate change might affect hail-producing weather patterns across Colorado.

The research focused on storms involving pea-sized and smaller hailstones on Colorado's Front Range, a region that stretches from the foothill communities of Colorado Springs, Denver and Fort Collins up to the Continental Divide. Colorado's most damaging hailstorms tend to occur further east and involve larger hailstones not examined in this study.

In the summer in Colorado's Front Range above about 7,500 feet, precipitation commonly falls as hail. Decision makers concerned about the safety of mountain dams and flood risk have been interested in how climate change may affect the amount and nature of precipitation in the region.

Mahoney and her colleagues began exploring that question with results from two climate models, which assumed that levels of climate-warming greenhouse gases will continue to increase in the future, from about 390 parts per million in the atmosphere today to about 620 parts per million in 2070.

But the weather processes that form hail, like thunderstorms, occur on much smaller scales than can be reproduced by global climate models. So the team "downscaled" the global model results twice: first to regional-scale models that can take regional topography and other details into account, then again to weather-scale models that can resolve individual storms and even the cloud processes that create hail. The regional-scale topography step was completed as part of NCAR's North American Regional Climate Change Assessment Program.

Finally, the team compared the hailstorms of the future, from 2041 to 2070, to those of the past, from 1971 to 2000, as captured by the same sets of downscaled models. Results were similar in experiments with both climate models.

"We found a near elimination of hail at the surface," Mahoney said.

In the future, increasingly intense storms may actually produce more hail inside clouds, the team found. However, because those relatively small hailstones fall through a warmer atmosphere, they melt quickly, falling as rain at the surface or evaporating back into the atmosphere. In some regions, simulated hail fell through an additional 1,500 feet of above-freezing air in the future as compared with the past.

The research team also found evidence that precipitation events over Colorado become more extreme in the future, while changes in hail may depend on the size of the hailstones -- results that will be explored in more detail in ongoing work.

Mahoney's postdoctoral research was supported by the Postdocs Applying Climate Expertise, or PACE, program administered by the University Corporation for Atmospheric Research and funded by CIRES Western Water Assessment, NOAA and the U.S. Bureau of Reclamation. PACE connects young climate scientists with real-world problems such as those faced by water resource managers.

Co-authors of the new paper include James Scott and Joseph Barsugli of CIRES and NOAA, Michael Alexander of the NOAA Earth System Research Laboratory and Gregory Thompson of NCAR.


Story Source:

The above story is based on materials provided by University of Colorado Boulder. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kelly Mahoney, Michael A. Alexander, Gregory Thompson, Joseph J. Barsugli, James D. Scott. Changes in hail and flood risk in high-resolution simulations over Colorado's mountains. Nature Climate Change, 2012; DOI: 10.1038/nclimate1344

Cite This Page:

University of Colorado Boulder. "Colorado mountain hail may disappear in a warmer future." ScienceDaily. ScienceDaily, 12 January 2012. <www.sciencedaily.com/releases/2012/01/120108143555.htm>.
University of Colorado Boulder. (2012, January 12). Colorado mountain hail may disappear in a warmer future. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/01/120108143555.htm
University of Colorado Boulder. "Colorado mountain hail may disappear in a warmer future." ScienceDaily. www.sciencedaily.com/releases/2012/01/120108143555.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins