Featured Research

from universities, journals, and other organizations

Graphene reveals its magnetic personality

Date:
January 9, 2012
Source:
University of Manchester
Summary:
Can organic matter behave like a fridge magnet? Scientists have now shown that it can. Researchers took nonmagnetic graphene and then either 'peppered' it with other nonmagnetic atoms like fluorine or removed some carbon atoms from the chicken wire. The empty spaces, called vacancies, and added atoms all turned out to be magnetic, exactly like atoms of, for example, iron.

Strain in graphene opens up a pseudomagnetic gap.
Credit: Image courtesy of University of Manchester

Can organic matter behave like a fridge magnet? Scientists from The University of Manchester have now shown that it can.

Related Articles


In a report published in Nature Physics, they used graphene, the world's thinnest and strongest material, and made it magnetic.

Graphene is a sheet of carbon atoms arranged in a chicken wire structure. In its pristine state, it exhibits no signs of the conventional magnetism usually associated with such materials as iron or nickel.

Demonstrating its remarkable properties won Manchester researchers the Nobel Prize in Physics in 2010.

This latest research led by Dr Irina Grigorieva and Professor Sir Andre Geim (one of the Nobel prize recipients) could prove crucial to the future of graphene in electronics.

The Manchester researchers took nonmagnetic graphene and then either 'peppered' it with other nonmagnetic atoms like fluorine or removed some carbon atoms from the chicken wire. The empty spaces, called vacancies, and added atoms all turned out to be magnetic, exactly like atoms of, for example, iron.

"It is like minus multiplied by minus gives you plus," says Dr Irina Grigorieva.

The researchers found that, to behave as magnetic atoms, defects must be far away from each other and their concentration should be low. If many defects are added to graphene, they reside too close and cancel each other's magnetism. In the case of vacancies, their high concentration makes graphene disintegrate.

Professor Geim said: "The observed magnetism is tiny, and even the most magnetized graphene samples would not stick to your fridge.

"However, it is important to reach clarity in what is possible for graphene and what is not. The area of magnetism in nonmagnetic materials has previously had many false positives."

"The most likely use of the found phenomenon is in spintronics. Spintronics devices are pervasive, most notably they can be found in computers' hard disks. They function due to coupling of magnetism and electric current.

"Adding this new degree of functionality can prove important for potential applications of graphene in electronics," adds Dr Grigorieva.


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. R. Nair, M. Sepioni, I-Ling Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, I. V. Grigorieva. Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 2012; DOI: 10.1038/nphys2183

Cite This Page:

University of Manchester. "Graphene reveals its magnetic personality." ScienceDaily. ScienceDaily, 9 January 2012. <www.sciencedaily.com/releases/2012/01/120108143603.htm>.
University of Manchester. (2012, January 9). Graphene reveals its magnetic personality. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2012/01/120108143603.htm
University of Manchester. "Graphene reveals its magnetic personality." ScienceDaily. www.sciencedaily.com/releases/2012/01/120108143603.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins