Featured Research

from universities, journals, and other organizations

Theory explains how new material could improve electronic shelf life

Date:
January 21, 2012
Source:
University of Texas, Dallas
Summary:
Engineers have discovered that the new material graphene conducts heat about 20 times faster than silicon, making it an option as a semiconductor material that could produce quieter and longer-lasting computers, cellphones and other devices.

Research by UT Dallas engineers could lead to more-efficient cooling of electronics, producing quieter and longer-lasting computers, and cellphones and other devices.

Much of modern technology is based on silicon's use as a semiconductor material, but research recently published in the journal Nature Materials shows that graphene conducts heat about 20 times faster than silicon.

"Heat is generated every time a device computes," said Dr. Kyeongjae "KJ" Cho, associate professor of materials science and engineering and physics at UT Dallas and one of the paper's authors. "For example a laptop fan pumps heat out of the system, but heat removal starts with a chip on the inside. Engineered graphene could be used to remove heat -- fast."

It was demonstrated in 2004 that graphite could be changed into a sheet of bonded carbon atoms called graphene, which is believed to be the strongest material ever measured. Although much research has focused on the strength and electronics of the material, Cho has been studying its thermal conductivity.

As electronics become more complex and decrease in size, the challenge to remove heat from the core becomes more difficult, he said. Desktop and laptop computers have fans.

Smaller electronic devices such as cellphones have other thermoelectric cooling devices.

"The performance of an electronic device degrades as it heats up, and if it continues the device fails," said Cho, also a visiting professor at Seoul National University in South Korea.

"The faster heat is removed, the more efficient the device runs and the longer it lasts."

Research assistant Hengji Zhang of UT Dallas is also an author of the paper. Cho and Zhang have published prior papers in the Journal of Nanomaterials and Physical Review B about graphene's thermal conductivity. For the Nature Materials paper, researchers at UT Austin conducted an experiment about graphene's heat transfer. They used a laser beam to heat the center of a portion of graphene, then measured the temperature difference from the middle of the graphene to the edge. Cho's theory helped explain their findings.

"We refined our modeling work taking into account their experimental conditions and found we have quantitative agreement," Cho said. "By understanding how heat transfers through a two-dimensional graphene system, we can further manipulate its use in semiconductor devices used in everyday life." For this purpose, Cho and Zhang are preparing a follow-up article on how to control the thermal conductivity in graphene.


Story Source:

The above story is based on materials provided by University of Texas, Dallas. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shanshan Chen, Qingzhi Wu, Columbia Mishra, Junyong Kang, Hengji Zhang, Kyeongjae Cho, Weiwei Cai, Alexander A. Balandin, Rodney S. Ruoff. Thermal conductivity of isotopically modifiedgraphene. Nature Materials, 2012; DOI: 10.1038/nmat3207

Cite This Page:

University of Texas, Dallas. "Theory explains how new material could improve electronic shelf life." ScienceDaily. ScienceDaily, 21 January 2012. <www.sciencedaily.com/releases/2012/01/120109211557.htm>.
University of Texas, Dallas. (2012, January 21). Theory explains how new material could improve electronic shelf life. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/01/120109211557.htm
University of Texas, Dallas. "Theory explains how new material could improve electronic shelf life." ScienceDaily. www.sciencedaily.com/releases/2012/01/120109211557.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins