Featured Research

from universities, journals, and other organizations

A wealth of habitable planets in the Milky Way

Date:
January 11, 2012
Source:
University of Copenhagen
Summary:
Six years of observations of millions of stars now show how common it is for stars to have planets in orbits around them. Using a method that is sensitive to planets that lie in a habitable zone around the host stars, astronomers have discovered that most of the Milky Way's 100 billion stars have planets that are very similar to the Earth-like planets in our own solar system.

Gravitational microlensing method requires that you have two stars that lie on a straight line in relation to us here on Earth. Then the light from the background star is amplified by the gravity of the foreground star, which thus acts as a magnifying glass. When astronomers observe the light from the background star there might be a little extra bump on the light curve if there is a planet around the foreground star.
Credit: Image courtesy of University of Copenhagen

Six years of observations of millions of stars now show how common it is for stars to have planets in orbits around them. Using a method that is highly sensitive to planets that lie in a habitable zone around the host stars, astronomers, including members from the Niels Bohr Institute, have discovered that most of the Milky Way's 100 billion stars have planets that are very similar to Earth like planets in our own solar system -- Mercury, Venus, Earth and Mars, while planets like Jupiter and Saturn are more rare.

The results are published in the scientific journal, Nature.

"Our results show that planets orbiting around stars are more the rule than the exception. In a typical solar system approximately four planets have their orbits in the terrestrial zone, which is the distance from the star where you can find solid planets. On average, there are 1.6 planets in the area around the stars that corresponds to the area between Venus and Saturn" explains astronomer Uffe Gråe Jørgensen, head of the research group Astrophysics and Planetary Science at the Niels Bohr Institute at the University of Copenhagen.

Searching for exoplanets

Over 1000 exoplanets have been found in our galaxy, the Milky Way, and most have been found using either the radial velocity method or the transit method, both of which are best suited to be able to find planets that are large and relatively close to their host star.

With the radial velocity method you can measure that a star rocks in small circular motions due to a revolving planet's gravitational force.

With the transit method you measure periodic changes in the brightness of a star. When a planet moves in front of the star, there is a little dip in the star's brightness and if this little dip occurs regularly, further observations can reveal whether there it is a planet. With both methods you most often find large planets in such small orbits around their stars, that they have no equivalents in our own solar system.

Habitable exoplanets

In order to find planets similar to the planets we know from our own solar system, researchers must use a third method -- gravitational microlensing observations. But the gravitational microlensing method requires very special conditions concerning the stars location in the galaxy.

Uffe Gråe Jørgensen explains that you need to have two stars that lie on a straight line in relation to us here on Earth. Then the light from the background star is amplified by the gravity of the foreground star, which thus acts as a magnifying glass. When the stars pass close by each other in the sky, astronomers can observe the light from the background star first increase and then decrease again. If there is a planet around the foreground star, there might be a little extra bump on the light curve. But if the planet is very close to the star, the bump 'drowns' on the light curve, and if the planet is very far from star, you do not see it. "Therefore the method is most sensitive to planets that lie at an Earth-like distance from a star," explains Uffe Gråe Jørgensen.

It is rare that two planets pass by each other closely enough to create a microlens. We have therefore implemented a strategic search on two levels. Every starry night the research group scans 100 million stars using telescopes in Chile and New Zealand. If the scanning identifies a stellar location with a possible microlensing effect, it is automatically registered and all researchers are notified. Then the best 'lenses' are observed more closely at high resolution and their light curves are analysed. One of the places this is done is at the Danish 1.5 meter telescope at ESO's La Silla Observatory in Chile.

"In a six year period from 2002 to 2007, we observed 500 stars at high resolution. In 10 of the stars we directly see the lens effect of a planet, and for the others we could use statistical arguments to determine how many planets the stars had on average. To be exact, we found that the zone that corresponds to the area between Venus and Saturn in our solar system had and average of 1.6 planets the size of five Earth masses or more," explains Uffe Gråe Jørgensen.

Billions of habitable planets

The microlensing results complement the best existing transit and radial velocity measurements. Using transit measurements, the American Kepler satellite has identified a very large number of relatively small planets in orbits smaller than even the innermost planet in our own solar system, Mercury, while many years of radial velocity measurements have revealed a large number of very large planets in both very small orbits and slightly larger orbits.

"Our microlensing data complements the other two methods by identifying small and large planets in the area midway between the transit and radial velocity measurements. Together, the three methods are, for the first time, able to say something about how common our own solar system is, as well as how many stars appear to have Earth-size planets in the orbital area where liquid what could, in principle, exist as lakes, rivers and oceans -- that is to say, where life as we know it from Earth could exist in principle," says Uffe Gråe Jørgensen. He explains that a statistical analysis of all three methods combined shows that out of the Milky Way's 100 billion stars, there are about 10 billion stars with planets in the habitable zone. This means that there may be billions of habitable planets in the Milky Way. For thousands of years people have been guessing how many planets there might be out there among the stars, where we could, in principle at least, live. Today we know this.

Are we alone in the universe?

But it is one thing, that the planets have the right temperature to be habitable in principle, but quite another thing, whether they are inhabited -- whether there is life and perhaps even intelligent life on the planets.

"There are so many unique events in our solar system that have created the basis for the development of life on Earth. Comets brought water to our planet so that life could arise and a series of random events set in motion an evolution that lead to humans and intelligent life. It is very unlikely that the same circumstances would be present in other solar systems," believes Uffe Gråe Jørgensen, "but perhaps other coincidences in other solar systems have led to entirely different and exciting new forms of life. Recent research of planets around other stars has shown us that there is in any case billions of planets with orbits like Earth and of comparable size to the Earth."


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Cassan, D. Kubas, J.-P. Beaulieu, M. Dominik, K. Horne, J. Greenhill, J. Wambsganss, J. Menzies, A. Williams, U. G. Jørgensen, A. Udalski, D. P. Bennett, M. D. Albrow, V. Batista, S. Brillant, J. A. R. Caldwell, A. Cole, Ch. Coutures, K. H. Cook, S. Dieters, D. Dominis Prester, J. Donatowicz, P. Fouqué, K. Hill, N. Kains, S. Kane, J.-B. Marquette, R. Martin, K. R. Pollard, K. C. Sahu, C. Vinter, D. Warren, B. Watson, M. Zub, T. Sumi, M. K. Szymański, M. Kubiak, R. Poleski, I. Soszynski, K. Ulaczyk, G. Pietrzyński, Ł. Wyrzykowski. One or more bound planets per Milky Way star from microlensing observations. Nature, 2012; 481 (7380): 167 DOI: 10.1038/nature10684

Cite This Page:

University of Copenhagen. "A wealth of habitable planets in the Milky Way." ScienceDaily. ScienceDaily, 11 January 2012. <www.sciencedaily.com/releases/2012/01/120111133943.htm>.
University of Copenhagen. (2012, January 11). A wealth of habitable planets in the Milky Way. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2012/01/120111133943.htm
University of Copenhagen. "A wealth of habitable planets in the Milky Way." ScienceDaily. www.sciencedaily.com/releases/2012/01/120111133943.htm (accessed September 21, 2014).

Share This



More Space & Time News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) — SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Planet Population Is Plentiful: Planets Around Stars Are the Rule Rather Than the Exception

Jan. 11, 2012 — Astronomers have used the technique of gravitational microlensing to measure how common planets are in the Milky Way. After a six-year search that surveyed millions of stars, the team concludes that ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins