Featured Research

from universities, journals, and other organizations

Magnetic actuation enables nanoscale thermal analysis

Date:
January 19, 2012
Source:
University of Illinois College of Engineering
Summary:
In recent years an atomic force microscope-based technique called nanoscale thermal analysis has been employed to reveal the temperature-dependent properties of materials at the sub-100 nm scale. Typically, nanothermal analysis works best for soft polymers. Researchers have now shown that they can perform nanoscale thermal analysis on stiff materials like epoxies and filled composites.

Atomic force microscope with integrated heater actuated using Lorentz force.
Credit: Image courtesy of University of Illinois College of Engineering

Polymer nano-films and nano-composites are used in a wide variety of applications from food packaging to sports equipment to automotive and aerospace applications. Thermal analysis is routinely used to analyze materials for these applications, but the growing trend to use nanostructured materials has made bulk techniques insufficient.

Related Articles


In recent years an atomic force microscope-based technique called nanoscale thermal analysis (nanoTA) has been employed to reveal the temperature-dependent properties of materials at the sub-100 nm scale. Typically, nanothermal analysis works best for soft polymers. Researchers at the University of Illinois at Urbana-Champaign and Anasys Instruments, Inc. have now shown that they can perform nanoscale thermal analysis on stiff materials like epoxies and filled composites.

"This new technique lets us measure temperature and frequency-dependent properties of materials rapidly over a wide bandwidth," noted William King, the College of Engineering Bliss Professor in the Department of Mechanical Science and Engineering at Illinois, who led the research. The technique works by flowing a current around the U-shaped arms of a self-heating atomic force microscope (AFM) cantilever and interacting that current with a magnetic field. The magnetic field allows the tip-sample force to be modulated right near the tip of the AFM.

"We are able to achieve nanometer-scale force control that is independent from the heating temperature," according to Byeonghee Lee, first author of the paper.

"Conventional nanothermal analysis has struggled with highly filled, highly crosslinked materials and sub-100 nm thin films. This new technique has allowed us to reliably measure and map glass transitions and melting transions on classes of materials that were previously very challenging," said Craig Prater, chief technology officer at Anasys Instruments and co-author on the paper.

The research was performed in King's Nanoengineering Laboratory and at Anasys Instruments. King is also affiliated with the Department of Materials Science and Engineering, the Department of Electrical and Computer Engineering, the Beckman Institute for Advanced Science and Technology, the Micro and Nanotechnology Laboratory, and the Materials Research Laboratory, all at the University of Illinois. The research was sponsored by the Air Force Office of Scientific Research and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Illinois College of Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. Byeonghee Lee, Craig B Prater, William P King. Lorentz force actuation of a heated atomic force microscope cantilever. Nanotechnology, 2012; 23 (5): 055709 DOI: 10.1088/0957-4484/23/5/055709

Cite This Page:

University of Illinois College of Engineering. "Magnetic actuation enables nanoscale thermal analysis." ScienceDaily. ScienceDaily, 19 January 2012. <www.sciencedaily.com/releases/2012/01/120112134324.htm>.
University of Illinois College of Engineering. (2012, January 19). Magnetic actuation enables nanoscale thermal analysis. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/01/120112134324.htm
University of Illinois College of Engineering. "Magnetic actuation enables nanoscale thermal analysis." ScienceDaily. www.sciencedaily.com/releases/2012/01/120112134324.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins