Featured Research

from universities, journals, and other organizations

Charges going astray: New transfer paths for electrons discovered

Date:
January 23, 2012
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
In the development of materials for energy production and distribution, knowledge of molecular processes in electrical charge transfer is fundamental. Scientists have once more discovered that nature provides interesting templates for long-range electron transfer.

Known (top) and newly discovered (bottom) charge transfer path.
Credit: Image courtesy of Albert-Ludwigs-Universität Freiburg

In the development of materials for energy production and distribution, knowledge of molecular processes in electrical charge transfer is fundamental. Research groups of Prof. Dr. Stefan Weber and Prof. Dr. Thorsten Koslowski at the Institute for Physical Chemistry of the Albert-Ludwigs-University Freiburg once more discovered that nature provides interesting templates for long-range electron transfer.

They recently published their results in the  journal Angewandte Chemie International Edition. In collaboration with Dr. Kenichi Hitomi and Prof. Dr. Elizabeth D. Getzoff of Scripps Research Institute in La Jolla/USA the physico chemists studied proteins from the photolyase/cryptochrome family. These proteins perform a range of different tasks although their topologies are very similar.

All members of the protein family share a cascade of three amino acids that forms a pathway from the protein surface to its core, along which electrons can "hop." When studying cyanobacterial cryptochrome using time-resolved electron paramagnetic resonance, the charge carriers, however, did not follow the usual electron channel despite the presence of the amino acid cascade known from the other members of the family. Instead, the cascade was used only partially, eventually branching to a neighboring amino acid, even though the electrons had to then cover a much longer distance.

With the help of theoretical analyses the scientists were able to describe and thereby understand the protein's unexpected behavior: The orientation of the amino acids has a stronger influence on electron-transfer efficiency than previously expected, and a more favorable stacking of the amino acid "stepping stones" can compensate for the longer distance. Hence, evident structural similarity does not necessarily lead to identical behavior. To "understand" the protein, one clearly needs to look closer.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Till Biskup, Kenichi Hitomi, Elizabeth D. Getzoff, Sebastian Krapf, Thorsten Koslowski, Erik Schleicher, Stefan Weber. Unexpected Electron Transfer in Cryptochrome Identified by Time-Resolved EPR Spectroscopy. Angewandte Chemie International Edition, 2011; 50 (52): 12647 DOI: 10.1002/anie.201104321

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Charges going astray: New transfer paths for electrons discovered." ScienceDaily. ScienceDaily, 23 January 2012. <www.sciencedaily.com/releases/2012/01/120113205917.htm>.
Albert-Ludwigs-Universität Freiburg. (2012, January 23). Charges going astray: New transfer paths for electrons discovered. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/01/120113205917.htm
Albert-Ludwigs-Universität Freiburg. "Charges going astray: New transfer paths for electrons discovered." ScienceDaily. www.sciencedaily.com/releases/2012/01/120113205917.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins