Featured Research

from universities, journals, and other organizations

Charges going astray: New transfer paths for electrons discovered

Date:
January 23, 2012
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
In the development of materials for energy production and distribution, knowledge of molecular processes in electrical charge transfer is fundamental. Scientists have once more discovered that nature provides interesting templates for long-range electron transfer.

Known (top) and newly discovered (bottom) charge transfer path.
Credit: Image courtesy of Albert-Ludwigs-Universität Freiburg

In the development of materials for energy production and distribution, knowledge of molecular processes in electrical charge transfer is fundamental. Research groups of Prof. Dr. Stefan Weber and Prof. Dr. Thorsten Koslowski at the Institute for Physical Chemistry of the Albert-Ludwigs-University Freiburg once more discovered that nature provides interesting templates for long-range electron transfer.

They recently published their results in the  journal Angewandte Chemie International Edition. In collaboration with Dr. Kenichi Hitomi and Prof. Dr. Elizabeth D. Getzoff of Scripps Research Institute in La Jolla/USA the physico chemists studied proteins from the photolyase/cryptochrome family. These proteins perform a range of different tasks although their topologies are very similar.

All members of the protein family share a cascade of three amino acids that forms a pathway from the protein surface to its core, along which electrons can "hop." When studying cyanobacterial cryptochrome using time-resolved electron paramagnetic resonance, the charge carriers, however, did not follow the usual electron channel despite the presence of the amino acid cascade known from the other members of the family. Instead, the cascade was used only partially, eventually branching to a neighboring amino acid, even though the electrons had to then cover a much longer distance.

With the help of theoretical analyses the scientists were able to describe and thereby understand the protein's unexpected behavior: The orientation of the amino acids has a stronger influence on electron-transfer efficiency than previously expected, and a more favorable stacking of the amino acid "stepping stones" can compensate for the longer distance. Hence, evident structural similarity does not necessarily lead to identical behavior. To "understand" the protein, one clearly needs to look closer.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Till Biskup, Kenichi Hitomi, Elizabeth D. Getzoff, Sebastian Krapf, Thorsten Koslowski, Erik Schleicher, Stefan Weber. Unexpected Electron Transfer in Cryptochrome Identified by Time-Resolved EPR Spectroscopy. Angewandte Chemie International Edition, 2011; 50 (52): 12647 DOI: 10.1002/anie.201104321

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Charges going astray: New transfer paths for electrons discovered." ScienceDaily. ScienceDaily, 23 January 2012. <www.sciencedaily.com/releases/2012/01/120113205917.htm>.
Albert-Ludwigs-Universität Freiburg. (2012, January 23). Charges going astray: New transfer paths for electrons discovered. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/01/120113205917.htm
Albert-Ludwigs-Universität Freiburg. "Charges going astray: New transfer paths for electrons discovered." ScienceDaily. www.sciencedaily.com/releases/2012/01/120113205917.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins