Featured Research

from universities, journals, and other organizations

Quantum uncertainty: Are you certain, Mr. Heisenberg?

Date:
January 18, 2012
Source:
Vienna University of Technology, TU Vienna
Summary:
Heisenberg's Uncertainty principle is arguably one of the most famous foundations of quantum physics. It says that not all properties of a quantum particle can be measured with unlimited accuracy. Until now, this has often been justified by the notion that every measurement necessarily has to disturb the quantum particle, which distorts the results of any further measurements. This, however, turns out to be an oversimplification, researchers now say.

Jacqueline Erhart, Stephan Sponar, Prof. Yuji Hasegawa, Georg Sulyok (left to right).
Credit: Image courtesy of Vienna University of Technology, TU Vienna

Heisenberg's Uncertainty principle is arguably one of the most famous foundations of quantum physics. It says that not all properties of a quantum particle can be measured with unlimited accuracy. Until now, this has often been justified by the notion that every measurement necessarily has to disturb the quantum particle, which distorts the results of any further measurements. This, however, turns out to be an oversimplification, new research suggests.

In neutron experiments carried out by professor Yuji Hasegawa and his team at Vienna University of Technology, different sources of quantum uncertainty can now be distinguished, validating theoretical results by collaborators from Japan.

The influence of the measurement on the quantum system is not always the reason for uncertainty. Heisenberg's arguments for the uncertainty principle have to be revisited -- the uncertainty principle itself however remains valid. The results have now been published in the journal Nature Physics.

Position or Momentum -- But Never Both

It is well established that some physical quantities cannot be measured at the same time. The question is, how this fact should be interpreted. "Heisenberg's famous thought experiment about using light light (?-rays) to measure the position of an electron is still quoted today," says Jacqueline Erhart from the Institute for Atomic and Subatomic Physics at the Vienna University of Technology. To measure the position of a particle with high precision, light with a very short wavelength (and therefore high energy) has to be used. This results in momentum being transferred to the particle -- the particle is kicked by the light. Therefore, Heisenberg argued, it is impossible to measure both position and momentum accurately. The same is true for other pairs of physical quantities. Heisenberg believed that in these cases, an error in one measurement leads to an inevitable disturbance of the other measurement. The product of error and disturbance, Heisenberg claimed, cannot be smaller than an a certain threshold.

Nature is Uncertain -- Even Without Measurements

However, the effect of the measurement on the quantum system and the resulting disturbance of the second measurement is not the core of the problem. "Such disturbances are also present in classical physics -- they are not necessarily linked to quantum physics," Stephan Sponar (Vienna UT) explains. The uncertainty is rooted in the quantum nature of the particle. Quantum particles cannot be described like a point-like object with a well-defined velocity. Instead, quantum particles behave as a wave -- and for a wave, position and momentum cannot be defined accurately at the same time. One could say that the particle itself does not even "know" where exactly it is and how fast it travels -- regardless of the particle being measured or not.

A Generalized Uncertainty Relation -- Taking the Measurement Into Account

"In order to describe the fundamental uncertainty and the additional disturbance due to the measuring process, both particle and measurement device have to be treated in the framework of quantum theory," says Georg Sulyok (Vienna UT). This was done by the Japanese physicist professor Masanao Ozawa in 2003, leading to a generalized uncertainty principle. His equations contain different "kinds of uncertainty": On the one hand the uncertainty which comes from the measurement, as it disturbs the particle (this is the uncertainty described in Heisenberg's thought experiment of the position-momentum-measurement), on the other hand the equations contain the fundamental quantum uncertainty, which is present in any quantum system, regardless of the measurement.

Neutrons and their Spin

A sophisticated experimental design now made it possible to study these contribution to uncertainty at the Vienna University of Technology. Instead of a particle's position and momentum, the spin of neutrons was measured. The spin in x-direction and the spin in y-direction cannot be measured simultaneously, they fulfill the uncertainty relation, in much the same way as position and momentum. With magnetic fields, the neutron spins were rotated into the right direction, then the spins were measured in two consecutive experiments. Carrying out a large number of measurements with small, well-defined changes in the measurement apparatus, the physicists could study the interplay between different sources of uncertainty.

Arbitrarily Small Disturbance

"The smaller the error in one measurement, the larger the disturbance of the other -- this rule still holds. But the product of error and disturbance can be made arbitrarily small -- even smaller than Heisenberg's original formulation of the uncertainty principle would allow," says professor Yuji Hasegawa. But even if two measurements hardly influence each other: quantum physics remains "uncertain." "The uncertainty principle is of course still true," the researchers confirm. "But the uncertainty does not always come from the disturbing influence of the measurement, but from the quantum nature of the particle itself."


Story Source:

The above story is based on materials provided by Vienna University of Technology, TU Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jacqueline Erhart, Stephan Sponar, Georg Sulyok, Gerald Badurek, Masanao Ozawa, Yuji Hasegawa. Experimental demonstration of a universally validerror–disturbance uncertainty relation inspinmeasurements. Nature Physics, 2012; DOI: 10.1038/nphys2194

Cite This Page:

Vienna University of Technology, TU Vienna. "Quantum uncertainty: Are you certain, Mr. Heisenberg?." ScienceDaily. ScienceDaily, 18 January 2012. <www.sciencedaily.com/releases/2012/01/120116095529.htm>.
Vienna University of Technology, TU Vienna. (2012, January 18). Quantum uncertainty: Are you certain, Mr. Heisenberg?. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/01/120116095529.htm
Vienna University of Technology, TU Vienna. "Quantum uncertainty: Are you certain, Mr. Heisenberg?." ScienceDaily. www.sciencedaily.com/releases/2012/01/120116095529.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins