Featured Research

from universities, journals, and other organizations

Power generation is blowing in the wind

Date:
January 25, 2012
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
By looking at the stability of the atmosphere, wind farm operators could gain greater insight into the amount of power generated at any given time. Power generated by a wind turbine largely depends on the wind speed. In a wind farm in which the turbines experience the same wind speeds but different shapes (such as turbulence) to the wind profile, a turbine will produce different amounts of power. This variable power can be predicted by looking at atmospheric stability, according to new research.

Wind turbines can produce different amount of power due to different "shapes" in the wind.
Credit: Photo by Jacqueline McBride/LLNL

By looking at the stability of the atmosphere, wind farm operators could gain greater insight into the amount of power generated at any given time.

Power generated by a wind turbine largely depends on the wind speed. In a wind farm in which the turbines experience the same wind speeds but different shapes, such as turbulence, to the wind profile, a turbine will produce different amounts of power.

This variable power can be predicted by looking at atmospheric stability, according to Lawrence Livermore National Laboratory scientist Sonia Wharton and colleague Julie Lundquist of the University of Colorado at Boulder and the National Renewable Energy Laboratory.

In a paper appearing in the Jan. 12 edition of the journal Environmental Research Letters, Wharton and Lundquist examined turbine-generated power data, segregated by atmospheric stability, to figure out the power performance at a West Coast wind farm.

"The dependence of power on stability is clear, regardless of whether time periods are segregated by three-dimensional turbulence, turbulence intensity or wind shear," Wharton said.

The team found that power generated at a set wind speed is higher under stable conditions and lower under strongly unsteady conditions at that location. The average wind power output difference is as high as 15 percent less wind power generation when the atmosphere is unstable.

While turbulence is a relatively well-known term in assessing turbine efficiency, wind shear -- which is a difference in wind speed and direction over a relatively short distance in the atmosphere -- also plays an important role when assessing how much power a turbine generates over certain time scales.

Wharton and Lundquist said that wind farm operators could better estimate how much power is generated if the wind forecasts included atmospheric stability impact measurements.

Though earlier research looked at atmospheric stability effects on power output, few studies have analyzed power output from modern turbines with hub heights of more than 60 meters.

In the new research, Wharton and Lundquist gathered a year of power data from upwind modern turbines (80 meters high) at a multi-megawatt wind farm on the West Coast. They considered turbine power information as well as meteorological data from an 80-meter tall tower and a Sonic Detection and Ranging (SODAR), which provided wind profiles up to 200 meters above the surface, to look at turbulence and wind shear. Looking at upwind turbines removed any influence that turbine wakes may have on power performance.

The team found that wind speed and power production varied by season as well as from night to day. Wind speeds were higher at night (more power) than during the day (less power) and higher during the warm season (more power) than in the cool season (less power). For example, average power production was 43 percent of maximum generation capacity on summer days and peaked at 67 percent on summer nights.

"We found that wind turbines experienced stable, near-neutral and unstable conditions during the spring and summer," Wharton said. "But daytime hours were almost always unstable or neutral while nights were strongly stable."

"This work highlights the benefit of observing complete profiles of wind speed and turbulence across the turbine rotor disk, often available only with remote sensing technology like SODAR or LIDAR (Laser Detection and Ranging,)" Lundquist said. "Wind energy resource assessment and power forecasting would profit from this increased accuracy."


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sonia Wharton, Julie K Lundquist. Atmospheric stability affects wind turbine power collection. Environmental Research Letters, 2012; 7 (1): 014005 DOI: 10.1088/1748-9326/7/1/014005

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Power generation is blowing in the wind." ScienceDaily. ScienceDaily, 25 January 2012. <www.sciencedaily.com/releases/2012/01/120117161623.htm>.
DOE/Lawrence Livermore National Laboratory. (2012, January 25). Power generation is blowing in the wind. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/01/120117161623.htm
DOE/Lawrence Livermore National Laboratory. "Power generation is blowing in the wind." ScienceDaily. www.sciencedaily.com/releases/2012/01/120117161623.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins