Featured Research

from universities, journals, and other organizations

Physicists use ion beams to detect art forgery

Date:
January 20, 2012
Source:
University of Notre Dame
Summary:
Nuclear physicists are using accelerated ion beams to pinpoint the age and origin of material used in pottery, painting, metalwork and other art. The results of their tests can serve as powerful forensic tools to reveal counterfeit art work, without the destruction of any sample as required in some chemical analysis.

University of Notre Dame nuclear physicists Philippe Collon and Michael Wiescher are using accelerated ion beams to pinpoint the age and origin of material used in pottery, painting, metalwork and other art.
Credit: Image courtesy of University of Notre Dame

University of Notre Dame nuclear physicists Philippe Collon and Michael Wiescher are using accelerated ion beams to pinpoint the age and origin of material used in pottery, painting, metalwork and other art. The results of their tests can serve as powerful forensic tools to reveal counterfeit art work, without the destruction of any sample as required in some chemical analysis.

Their research is featured on the front cover of a recent issue of Physics Today in an article titled, "Accelerated ion beams for art forensics." Wiescher and Collon say, "Art experts play an important role in identifying the style, history and context of a painting, but a solid scientific basis for the proper identification and classification of a piece of art must rely on information from other sources.

"A host of approaches with origins in biology, chemistry and physics have allowed scientists and art historians not only to look below a painting's or artifact's surface, but also to analyze in detail the pigments used, investigate painting techniques and modifications done by the artist or art restorers, find trace materials that reveal ages and provenances, and more," Wiescher and Collon continue.

The information that is revealed can shed light on trading patterns, economic conditions and other details of history. For example, the amount of silver in Roman coins can indicate the degree of inflation in the ancient economy.

Laboratories in Europe, including several in Italy and one in the basement of the Louvre in Paris, have accelerators dedicated to the forensic analysis of art, and archaeological artifacts. These accelerator-based techniques have allowed not only to analyze the works themselves, but also to determine origin, trade and migration routes as well as dietary information. As an example, the analysis of the ruby eyes in a Babylonian statue of the goddess Ishtar using the Louvre's accelerator showed that the rubies came from a mine in Vietnam, demonstrating that trade occurred between those far-apart regions some 4,000 years ago.

At Notre Dame, researchers are using proton-induced x-ray emission (PIXE) and Accelerator Mass Spectroscopy (AMS) to study artifacts brought by local archeologists, Native American cultures in the American Southwest and the Snite Museum of Art extensive collection of Mesoamerican figurines.

Wiescher, the Frank M. Freimann Professor of Physics, and Collon, associate professor of physics, are using their findings to teach undergraduates. Wiescher initially developed the undergraduate physics class called Physical Methods in Art and Archaeology, and now Collon teaches the class which attracts students from nearly every major. The course covers topics such as X-ray fluorescence and X-ray absorption, proton-induced X-ray emission, neutron-induced activation analysis, radiocarbon dating, accelerator mass spectroscopy, luminescence dating, and methods of archeometry.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philippe Collon, Michael Wiescher. Accelerated ion beams for art forensics. Physics Today, 2012; 65 (1): 58 DOI: 10.1063/PT.3.1408

Cite This Page:

University of Notre Dame. "Physicists use ion beams to detect art forgery." ScienceDaily. ScienceDaily, 20 January 2012. <www.sciencedaily.com/releases/2012/01/120120184237.htm>.
University of Notre Dame. (2012, January 20). Physicists use ion beams to detect art forgery. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/01/120120184237.htm
University of Notre Dame. "Physicists use ion beams to detect art forgery." ScienceDaily. www.sciencedaily.com/releases/2012/01/120120184237.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins