Featured Research

from universities, journals, and other organizations

In solar cells, tweaking the tiniest of parts yields big jump in efficiency

Date:
January 21, 2012
Source:
University at Buffalo
Summary:
By tweaking the smallest of parts, engineers are hoping to dramatically increase the amount of sunlight that solar cells convert into electricity.

By tweaking the smallest of parts, a trio of University at Buffalo engineers is hoping to dramatically increase the amount of sunlight that solar cells convert into electricity.

Related Articles


With military colleagues, the UB researchers have shown that embedding charged quantum dots into photovoltaic cells can improve electrical output by enabling the cells to harvest infrared light, and by increasing the lifetime of photoelectrons.

The research appeared online last May in the journal Nano Letters. The research team included Vladimir Mitin, Andrei Sergeev and Nizami Vagidov, faculty members in UB's electrical engineering department; Kitt Reinhardt of the Air Force Office of Scientific Research; and John Little and advanced nanofabrication expert Kimberly Sablon of the U.S. Army Research Laboratory.

Mitin, Sergeev and Vagidov have founded a company, OPtoElectronic Nanodevices LLC. (OPEN LLC.), to bring the innovation to the market.

The idea of embedding quantum dots into solar panels is not new: According to Mitin, scientists had proposed about a decade ago that this technique could improve efficiency by allowing panels to harvest invisible, infrared light in addition to visible light. However, intensive efforts in this direction have previously met with limited success.

The UB researchers and their colleagues have not only successfully used embedded quantum dots to harvest infrared light; they have taken the technology a step further, employing selective doping so that quantum dots within the solar cell have a significant built-in charge.

This built-in charge is beneficial because it repels electrons, forcing them to travel around the quantum dots. Otherwise, the quantum dots create a channel of recombination for electrons, in essence "capturing" moving electrons and preventing them from contributing to electric current.

The technology has the potential to increase the efficiency of solar cells up to 45 percent, said Mitin, a SUNY Distinguished Professor. Through UB's Office of Science, Technology Transfer and Economic Outreach (STOR), he and his colleagues have filed provisional patent applications to protect their technology.

"Clean technology will really benefit the region, the state, the country," Mitin said. "With high-efficiency solar cells, consumers can save money and providers can have a smaller solar field that produces more energy."

Mitin and his colleagues have already invested significant amounts of time in developing the quantum dots with a built-in-charge, dubbed "Q-BICs." To further enhance the technology and bring it to the market, OPEN LLC is now seeking funding from private investors and federal programs.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kimberly A. Sablon, John W. Little, Vladimir Mitin, Andrei Sergeev, Nizami Vagidov, Kitt Reinhardt. Strong Enhancement of Solar Cell Efficiency Due to Quantum Dots with Built-In Charge. Nano Letters, 2011; 11 (6): 2311 DOI: 10.1021/nl200543v

Cite This Page:

University at Buffalo. "In solar cells, tweaking the tiniest of parts yields big jump in efficiency." ScienceDaily. ScienceDaily, 21 January 2012. <www.sciencedaily.com/releases/2012/01/120120184534.htm>.
University at Buffalo. (2012, January 21). In solar cells, tweaking the tiniest of parts yields big jump in efficiency. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2012/01/120120184534.htm
University at Buffalo. "In solar cells, tweaking the tiniest of parts yields big jump in efficiency." ScienceDaily. www.sciencedaily.com/releases/2012/01/120120184534.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

HTC And Valve Team Up For Virtual Reality Headset

HTC And Valve Team Up For Virtual Reality Headset

Newsy (Mar. 1, 2015) HTC unveiled Vive, its new virtual reality headset, Sunday. The device is supported by gaming company Valve, which has made a push into the market. Video provided by Newsy
Powered by NewsLook.com
Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins