Featured Research

from universities, journals, and other organizations

How our brains keep us focused

Date:
January 22, 2012
Source:
RIKEN
Summary:
Scientists have uncovered mechanisms that help our brain to focus by efficiently routing only relevant information to perceptual brain regions.

Scientists at the RIKEN Brain Science Institute (BSI) have uncovered mechanisms that help our brain to focus by efficiently routing only relevant information to perceptual brain regions.

Focus on what I am about to tell you! Our complex modern world is filled with so many distractions -- flashing images on a television screen, blinking lights, blaring horns -- that our ability to concentrate on one thing at a time is of critical importance. How does our brain achieve this ability to focus attention?

The answer is believed to lie in two distinct processes, referred to as "sensitivity enhancement" and "efficient selection." Sensitivity enhancement corresponds to improvements in how neurons in the cortex represent sensory information like sounds and lights, similar to the volume control or reception control on a television set. Efficient selection is more like a filter, routing important sensory information to higher-order perceptual areas of the brain while suppressing disruptions from irrelevant information.

With their research in Neuron, Justin Gardner and colleagues at the RIKEN BSI set out to put these hypotheses to the test and determine which of them plays a dominant role in perception. To do so, they measured brain activity using functional magnetic resonance imaging (fMRI) while human subjects either focused their attention on a single visual location, or distributed their attention across multiple locations. To evaluate results, they used computational models about how brain signals should change based on how well subjects were able to focus their attention.

What they found was that the computational model that best captured the brain activity in the human subjects was the one in which sensory signals were efficiently selected. The model also made a prediction about what kind of stimuli are particularly disruptive to our ability to focus, suggesting that signals which evoke high neural activity are preferentially passed on to perceptual areas of the brain: stimuli with high contrast that evoke large sensory responses, such as flashing lights or loud noises, can thus disrupt our ability to focus. While shedding light on the origins of perception, the results also hint at new ways of presenting information that capitalize on increasing neural activity to help our brains focus, promising applications in the development of critical information display technologies. The findings also offer insights into the causes of common attention-related disorders such as attention deficit hyperactivity disorder (ADHD).


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Cite This Page:

RIKEN. "How our brains keep us focused." ScienceDaily. ScienceDaily, 22 January 2012. <www.sciencedaily.com/releases/2012/01/120122104803.htm>.
RIKEN. (2012, January 22). How our brains keep us focused. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2012/01/120122104803.htm
RIKEN. "How our brains keep us focused." ScienceDaily. www.sciencedaily.com/releases/2012/01/120122104803.htm (accessed August 31, 2014).

Share This




More Mind & Brain News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com
Electrical Stimulation Boosts Brain Function, Study Says

Electrical Stimulation Boosts Brain Function, Study Says

Newsy (Aug. 29, 2014) Researchers found an improvement in memory and learning function in subjects who received electric pulses to their brains. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins