Featured Research

from universities, journals, and other organizations

Sweeping genetic analysis of rare disease yields common mechanism of hypertension

Date:
January 22, 2012
Source:
Yale University
Summary:
Analyzing all the genes of dozens of people suffering from a rare form of hypertension, researchers have discovered a new mechanism that regulates the blood pressure of all humans.

Analyzing all the genes of dozens of people suffering from a rare form of hypertension, Yale University researchers have discovered a new mechanism that regulates the blood pressure of all humans.

The findings by an international research team headed by Yale scientists, published online Jan. 22 in the journal Nature, may help explain what goes wrong in the one billion people who suffer from high blood pressure. The study also demonstrates the power of new DNA sequencing methods to find previously unknown disease-causing genes.

The team used a technique called whole exome sequencing -- an analysis of the makeup of all the genes -- to study a rare inherited form of hypertension characterized by excess levels of potassium in the blood. They found mutations in either of two genes that caused the disease in affected members of 41 families suffering from the condition.

The two genes interact with one another in a complex that targets other proteins for degradation, and they orchestrate the balance between salt reabsorption and potassium secretion in the kidney.

"These genes were not previously suspected to play a role in blood pressure regulation, but if they are lost, the kidney can't put the brakes on salt reabsorption, resulting in hypertension," said Richard Lifton, Sterling Professor and chair of the Department of Genetics at Yale and senior author of the paper.

The mutations had previously been difficult to find because there were very few affected members in each family, so traditional methods to map the genes' locations had been ineffective.

"The mutations in one gene were almost all new mutations found in affected patients but not their parents, while mutations in the other gene could be either dominant or recessive. The exome sequencing technology was ideally suited to cutting through these complexities," said Lynn Boyden of Yale, the first author of the paper.

The next step is to establish how these new components are involved in regulating sodium reabsorption in the kidney, in hopes of finding new ways intervene in hypertension, a major global health problem.

"We are finding all the individual parts to a complicated machine, and we need to understand how they are all put together to make the machine work," said Lifton, who is also an investigator of the Howard Hughes Medical Institute.

Physicians from 10 countries and 17 states in the United States recruited patients and families with this rare disease and participated in the research.

The work was funded by the HHMI and Leducq Transatlantic Network for Hypertension and from National Institutes of Health grants from a O'Brien Center and the Yale Clinical and Translational Science Award grant through the National Center for Research Resources.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lynn M. Boyden, Murim Choi, Keith A. Choate, Carol J. Nelson-Williams, Anita Farhi, Hakan R. Toka, Irina R. Tikhonova, Robert Bjornson, Shrikant M. Mane, Giacomo Colussi, Marcel Lebel, Richard D. Gordon, Ben A. Semmekrot, Alain Poujol, Matti J. Vδlimδki, Maria E. De Ferrari, Sami A. Sanjad, Michael Gutkin, Fiona E. Karet, Joseph R. Tucci, Jim R. Stockigt, Kim M. Keppler-Noreuil, Craig C. Porter, Sudhir K. Anand, Margo L. Whiteford, Ira D. Davis, Stephanie B. Dewar, Alberto Bettinelli, Jeffrey J. Fadrowski, Craig W. Belsha, Tracy E. Hunley, Raoul D. Nelson, Howard Trachtman, Trevor R. P. Cole, Maury Pinsk, Detlef Bockenhauer, Mohan Shenoy, Priya Vaidyanathan, John W. Foreman, Majid Rasoulpour, Farook Thameem, Hania Z. Al-Shahrouri, Jai Radhakrishnan, Ali G. Gharavi, Beatrice Goilav, Richard P. Lifton. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature, 2012; DOI: 10.1038/nature10814

Cite This Page:

Yale University. "Sweeping genetic analysis of rare disease yields common mechanism of hypertension." ScienceDaily. ScienceDaily, 22 January 2012. <www.sciencedaily.com/releases/2012/01/120122152548.htm>.
Yale University. (2012, January 22). Sweeping genetic analysis of rare disease yields common mechanism of hypertension. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/01/120122152548.htm
Yale University. "Sweeping genetic analysis of rare disease yields common mechanism of hypertension." ScienceDaily. www.sciencedaily.com/releases/2012/01/120122152548.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins