Featured Research

from universities, journals, and other organizations

The wild early lives of today's most massive galaxies: Dramatic star formation cut short by black holes

Date:
January 25, 2012
Source:
European Southern Observatory - ESO
Summary:
Astronomers have found the strongest link so far between the most powerful bursts of star formation in the early Universe, and the most massive galaxies found today. The galaxies, flowering with dramatic starbursts in the early Universe, saw the birth of new stars abruptly cut short, leaving them as massive — but passive — galaxies of aging stars in the present day. The astronomers also have a likely culprit for the sudden end to the starbursts: the emergence of supermassive black holes.

Using the APEX telescope, a team of astronomers has found the strongest link so far between the most powerful bursts of star formation in the early Universe, and the most massive galaxies found today. The galaxies, flowering with dramatic starbursts in the early Universe, saw the birth of new stars abruptly cut short, leaving them as massive -- but passive -- galaxies of aging stars in the present day. The astronomers also have a likely culprit for the sudden end to the starbursts: the emergence of supermassive black holes.

Astronomers have combined observations from the LABOCA camera on the ESO-operated 12-metre Atacama Pathfinder Experiment (APEX) telescope [1] with measurements made with ESO's Very Large Telescope, NASA's Spitzer Space Telescope, and others, to look at the way that bright, distant galaxies are gathered together in groups or clusters.

The more closely the galaxies are clustered, the more massive are their halos of dark matter -- the invisible material that makes up the vast majority of a galaxy's mass. The new results are the most accurate clustering measurements ever made for this type of galaxy.

The galaxies are so distant that their light has taken around ten billion years to reach us, so we see them as they were about ten billion years ago [2]. In these snapshots from the early Universe, the galaxies are undergoing the most intense type of star formation activity known, called a starburst.

By measuring the masses of the dark matter halos around the galaxies, and using computer simulations to study how these halos grow over time, the astronomers found that these distant starburst galaxies from the early cosmos eventually become giant elliptical galaxies -- the most massive galaxies in today's Universe.

"This is the first time that we've been able to show this clear link between the most energetic starbursting galaxies in the early Universe, and the most massive galaxies in the present day," explains Ryan Hickox (Dartmouth College, USA and Durham University, UK), the lead scientist of the team.

Furthermore, the new observations indicate that the bright starbursts in these distant galaxies last for a mere 100 million years -- a very short time in cosmological terms -- yet in this brief time they are able to double the quantity of stars in the galaxies. The sudden end to this rapid growth is another episode in the history of galaxies that astronomers do not yet fully understand.

"We know that massive elliptical galaxies stopped producing stars rather suddenly a long time ago, and are now passive. And scientists are wondering what could possibly be powerful enough to shut down an entire galaxy's starburst," says Julie Wardlow (University of California at Irvine, USA and Durham University, UK), a member of the team.

The team's results provide a possible explanation: at that stage in the history of the cosmos, the starburst galaxies are clustered in a very similar way to quasars, indicating that they are found in the same dark matter halos. Quasars are among the most energetic objects in the Universe -- galactic beacons that emit intense radiation, powered by a supermassive black hole at their centre.

There is mounting evidence to suggest the intense starburst also powers the quasar by feeding enormous quantities of material into the black hole. The quasar in turn emits powerful bursts of energy that are believed to blow away the galaxy's remaining gas -- the raw material for new stars -- and this effectively shuts down the star formation phase.

"In short, the galaxies' glory days of intense star formation also doom them by feeding the giant black hole at their centre, which then rapidly blows away or destroys the star-forming clouds," explains David Alexander (Durham University, UK), a member of the team.

[1] The 12-metre-diameter APEX telescope is located on the Chajnantor plateau in the foothills of the Chilean Andes. APEX is a pathfinder for ALMA (http://www.eso.org/public/teles-instr/alma.html), the Atacama Large Millimeter/submillimeter Array, a revolutionary new telescope that ESO, together with its international partners, is building and operating, also on the Chajnantor plateau. APEX is itself based on a single prototype antenna constructed for the ALMA project. The two telescopes are complementary: for example, APEX can find many targets across wide areas of sky, which ALMA will be able to study in great detail. APEX is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO.

[2] These distant galaxies are known as submillimetre galaxies. They are very bright galaxies in the distant Universe in which intense star formation occurs. Because of this extreme distance, their infrared light from dust grains heated by starlight is redshifted into longer wavelengths, and the dusty galaxies are therefore best observed in submillimetre wavelengths of light.


Story Source:

The above story is based on materials provided by European Southern Observatory - ESO. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ryan C. Hickox, J. L. Wardlow, Ian Smail, A. D. Myers, D. M. Alexander, A. M. Swinbank, A. L. R. Danielson, J. P. Stott, S. C. Chapman, K. E. K. Coppin, J. S. Dunlop, E. Gawiser, D. Lutz, P. van der Werf, A. Wei. The LABOCA survey of the Extended Chandra Deep Field-South: clustering of submillimetre galaxies. Monthly Notices of the Royal Astronomical Society, 2012; DOI: 10.1111/j.1365-2966.2011.20303.x

Cite This Page:

European Southern Observatory - ESO. "The wild early lives of today's most massive galaxies: Dramatic star formation cut short by black holes." ScienceDaily. ScienceDaily, 25 January 2012. <www.sciencedaily.com/releases/2012/01/120125091155.htm>.
European Southern Observatory - ESO. (2012, January 25). The wild early lives of today's most massive galaxies: Dramatic star formation cut short by black holes. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/01/120125091155.htm
European Southern Observatory - ESO. "The wild early lives of today's most massive galaxies: Dramatic star formation cut short by black holes." ScienceDaily. www.sciencedaily.com/releases/2012/01/120125091155.htm (accessed April 18, 2014).

Share This



More Space & Time News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Space X Launches to Space Station

Raw: Space X Launches to Space Station

AP (Apr. 18, 2014) On it's second attempt this week, The Space X company launched Friday from Cape Canaveral to ferry supplies to the International Space Station. (April 18) Video provided by AP
Powered by NewsLook.com
Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Reuters - US Online Video (Apr. 18, 2014) The rocket, built and operated by Space Exploration Technologies, carries a Dragon cargo ship loaded with supplies and equipment destined for the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Earth's Near-Twin Found Orbiting Red Dwarf

Earth's Near-Twin Found Orbiting Red Dwarf

Newsy (Apr. 17, 2014) The newly-discovered planet is roughly the size of Earth and could have liquid water on its surface. Video provided by Newsy
Powered by NewsLook.com
New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins