Featured Research

from universities, journals, and other organizations

Scientists identify protein that contributes to symptoms of Parkinson's disease

Date:
January 26, 2012
Source:
Gladstone Institutes
Summary:
Scientists have identified a protein that exacerbates symptoms of Parkinson's disease -- a discovery that could one day lead to new treatments for people who suffer from this devastating neurodegenerative illness.

Scientists at the Gladstone Institutes, an independent and nonprofit biomedical-research organization, have identified a protein that exacerbates symptoms of Parkinson's disease -- a discovery that could one day lead to new treatments for people who suffer from this devastating neurodegenerative illness.

In a paper being published online in Neuron, Gladstone Investigator Anatol Kreitzer, PhD, and Talia Lerner, PhD, who worked at Gladstone while completing her graduate studies at the University of California, San Francisco (UCSF), describe how a protein called RGS4 normally helps regulate the activity of neurons in the striatum -- the part of the brain that controls movement. But in experimental models of Parkinson's disease, RGS4 does the opposite by actually contributing to problems with motor control. The result is a deterioration of movement and motor coordination, which are the hallmark symptoms of Parkinson's. More than 10 million people suffer from Parkinson's worldwide, including the boxer Muhammad Ali and the actor Michael J. Fox.

Scientists have long known that a drop in dopamine -- an important chemical in the brain -- is associated with Parkinson's. And for decades patients have taken a drug called Levodopa to boost the brain's dopamine levels. Unfortunately, however, Levodopa's efficacy begins to fade as the disease progresses. So scientists have begun looking for other targets for which they can develop new therapeutic strategies.

"About 60,000 Americans are diagnosed with Parkinson's annually, and dopamine-based therapies often do not provide a long-term solution," said Dr. Kreitzer, who is also an assistant professor of physiology and neurology at UCSF, with which Gladstone is affiliated. "Our discovery that RGS4 may play a role in the development of Parkinson's symptoms, helps us lay the groundwork for a new therapeutic strategy -- independent of dopamine."

Drs. Kreitzer and Lerner found that RGS4 is required for dopamine to regulate brain circuits during learning. But when dopamine levels drop dramatically, as in Parkinson's, RGS4 becomes overactive and disrupts these circuits -- thereby leading to Parkinson's symptoms. Therefore, they tested whether removing RGS4 could prevent these symptoms.

Drs. Kreitzer and Lerner treated mice lacking RGS4 with a chemical that lowers dopamine levels, mimicking the effects of Parkinson's. They then monitored the mice's motor skills -- including their ability to move freely in an open arena and traverse a balance beam -- and compared them to Parkinson's mice in which RGS4 remained intact.

As expected, Parkinson's mice with RGS4 intact exhibited major problems with movement. They lacked coordination and often remained frozen in place for long periods of time. When attempting to cross the balance beam, many had repeated slips and falls, while others could not even attempt the task.

But Parkinson's mice without RGS4 performed fluid, coordinated movements with no major problems, even though they also had lower dopamine levels. The vast majority crossed the balance beam without any missteps. Many of the physical traces of Parkinson's had disappeared.

"By discovering how the removal of RGS4 affects brain circuitry at the molecular level, we gained a deeper understanding of the protein's role -- both normally and in Parkinson's disease," said Dr. Lerner. "We've also shed light on a previously unknown mechanism by which the dopamine depletion causes the symptoms of Parkinson's disease. We are optimistic that our work could pave the way for a much-needed alternative to Levodopa -- such as a drug that has the ability to inactivate RGS4 in Parkinson's patients."

Funding for this research came from a variety of sources, including the National Institutes of Health, the Pew Biomedical Scholars Program, the W.M. Keck Foundation and the McKnight Foundation.


Story Source:

The above story is based on materials provided by Gladstone Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. Talia N. Lerner, Anatol C. Kreitzer. RGS4 Is Required for Dopaminergic Control of Striatal LTD and Susceptibility to Parkinsonian Motor Deficits. Neuron, 2012; 73 (2): 347-359 DOI: 10.1016/j.neuron.2011.11.015

Cite This Page:

Gladstone Institutes. "Scientists identify protein that contributes to symptoms of Parkinson's disease." ScienceDaily. ScienceDaily, 26 January 2012. <www.sciencedaily.com/releases/2012/01/120125132603.htm>.
Gladstone Institutes. (2012, January 26). Scientists identify protein that contributes to symptoms of Parkinson's disease. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/01/120125132603.htm
Gladstone Institutes. "Scientists identify protein that contributes to symptoms of Parkinson's disease." ScienceDaily. www.sciencedaily.com/releases/2012/01/120125132603.htm (accessed April 16, 2014).

Share This



More Mind & Brain News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
App Fights Jet Lag With The Power Of Math

App Fights Jet Lag With The Power Of Math

Newsy (Apr. 13, 2014) Researchers at the University of Michigan have designed an app to fight jet lag by adjusting your body's light intake. Video provided by Newsy
Powered by NewsLook.com
Treatment Gaps Endangering Cops, Mentally Ill

Treatment Gaps Endangering Cops, Mentally Ill

AP (Apr. 10, 2014) As states slash funding for mental health services, police officers are interacting more than ever with people suffering from schizophrenia and other serious disorders of the mind. The consequences can be deadly. (April 10) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins