Featured Research

from universities, journals, and other organizations

Engineers' innovation addresses major challenge of drug delivery

Date:
January 27, 2012
Source:
University of Texas at Austin
Summary:
A new physical form of proteins could drastically improve treatments for cancer and other diseases, as well as overcome some of the largest challenges in therapeutics: Delivering drugs to patients safely, easily and more effectively.

A new physical form of proteins developed by researchers at The University of Texas at Austin could drastically improve treatments for cancer and other diseases, as well as overcome some of the largest challenges in therapeutics: delivering drugs to patients safely, easily and more effectively.

Related Articles


The protein formulation strategy, developed by faculty and students in the Cockrell School of Engineering's Department of Chemical Engineering, is unprecedented and offers a new and universal approach to drug delivery -- one that could revolutionize treatment of cancer, arthritis and infectious disease.

"We believe this discovery of a new highly concentrated form of proteins -- clusters of individual protein molecules -- is a disruptive innovation that could transform how we fight diseases," said Keith P. Johnston, a chemical engineering professor and member of the National Academy Engineering. "It required integration of challenging contributions in fundamental science and engineering from three of our chemical engineering research groups."

The research, led by Johnston, Chemical Engineering Professor Thomas M. Truskett and Assistant Professor Jennifer Maynard, was published online recently ahead of a print version to appear soon in the ACS Nano journal.

"The real challenge in developing therapeutics is how do you deliver them to patients?" Maynard said.

Typically, protein biopharmaceuticals are administered intravenously at dilute concentrations in a hospital or clinic. Scientists and engineers have long tried to produce safe drugs at higher concentrations, so that a patient could self-inject the drugs at home, similar to an insulin shot. But doing so has been stymied by the fact that proteins, in high-concentration formulations, form aggregates that could be dangerous to patients and gels that cannot be injected.

The Cockrell School research team has introduced a new physical form of proteins, whereby proteins are packed into highly concentrated, nanometer-sized clusters that can pass through a needle into a patient to treat disease. The novel composition avoids the pitfalls of previous attempts because drug proteins are clustered so densely that they don't unfold or form dangerous aggregates.

"This general physical concept for forming highly concentrated, yet stable, protein dispersions is a major new direction in protein science," Johnston said.

A key advance came in 2004, when Truskett predicted that protein-based drugs in solution would be stable if they could somehow be formulated at ultra-high concentrations. At that time, Johnston had nanoparticles of concentrated stable protein but didn't know how to disperse them in an injectable form.

In 2009, the team formed protein nanoclusters in water simply by properly adjusting the pH (to lower protein charge) and adding sugar to crowd protein molecules together. Upon dilution or subcutaneous injection into a mouse the proteins separate back to individual stable molecules with biological activity. Once injected, the protein in the bloodstream attacks targeted cells and tumors similarly as for protein delivered via IV therapy. To provide a roadmap for improving the design of nanoclusters, chemical engineering graduate students, Andrea Miller and Ameya Borwankar, worked with Truskett and Johnston to develop a new thermodynamic theory.

Another breakthrough for the team came in 2009 when a chemical engineering senior, Brian Wilson, created a transparent dispersion of extremely concentrated protein, which was later found to be formed of nanoclusters.

"Through Brian's discussions about the research both inside and outside of the classroom, numerous undergraduate students at UT are now realizing the enormous opportunities they have to contribute to science, engineering and human health when they get involved in research projects," Johnston said.

Since the research began in 2004, three patent applications have been filed through the university's Office of Technology Commercialization.

The research is funded by the National Science Foundation, the National Institutes of Health, the Welch Foundation, and the Packard Foundation. Starting in 2012, two major pharmaceutical companies will fund the work.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keith P. Johnston, Jennifer A. Maynard, Thomas M. Truskett, Ameya U. Borwankar, Maria A. Miller, Brian K. Wilson, Aileen K. Dinin, Tarik A. Khan, Kevin J. Kaczorowski. Concentrated Dispersions of Equilibrium Protein Nanoclusters That Reversibly Dissociate into Active Monomers. ACS Nano, 2012; 6 (2): 1357 DOI: 10.1021/nn204166z

Cite This Page:

University of Texas at Austin. "Engineers' innovation addresses major challenge of drug delivery." ScienceDaily. ScienceDaily, 27 January 2012. <www.sciencedaily.com/releases/2012/01/120127174846.htm>.
University of Texas at Austin. (2012, January 27). Engineers' innovation addresses major challenge of drug delivery. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/01/120127174846.htm
University of Texas at Austin. "Engineers' innovation addresses major challenge of drug delivery." ScienceDaily. www.sciencedaily.com/releases/2012/01/120127174846.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins