Featured Research

from universities, journals, and other organizations

Data storage: Magnetic memories

Date:
February 1, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Magnetic random-access memory based on new spin transfer technology achieves higher storage density by packing multiple bits of data into each memory cell.

Magnetic random-access memory based on new spin transfer technology achieves higher storage density by packing multiple bits of data into each memory cell.

Solid-state memory is seeing an increase in demand due to the emergence of portable devices such as tablet computers and smart phones. Spin-transfer torque magnetoresistive random-access memory (STT-MRAM) is a new type of solid-state memory that uses electrical currents to read and write data that are stored on magnetic moment of electrons. Rachid Sbiaa and co-workers at the A*STAR Data Storage Institute1 have now enhanced the storage density of STT-MRAM by packing multiple bits of information into each of its memory cells.

"As a technology, STT-MRAM has several advantages," says Sbiaa. "They have high read and write speed, low power consumption, great endurance, and are easy to integrate with standard semiconductor-processing technologies." Further increasing the storage density remains a challenge, however, because the write current needs to be increased to keep the bit thermally stable. A solution to overcome this problem is to use memory cells that can hold multiple bits, but scientists have yet to achieve the electrical control needed for this kind of STT-MRAM.

Essentially, STT-MRAM reads and writes information by passing currents through multiple magnetic thin films. Information is written if the magnetic moment of electrons in the current, or spin, is aligned in one preferable direction. The torque by these aligned spins on the magnetic layers can be strong enough to switch the magnetic direction of the layers to the direction set by the current.

Reading information is done through the measurement of electrical resistance of the device, which depends on whether the magnetizations of the soft and hard magnetic layers are aligned in parallel or opposite directions relative to each other. The hard magnetic layer is designed in such a way that its magnetism cannot be switched by electric currents.

To store two bits, the researchers have now added a second soft magnetic layer. These two soft magnets are slightly different, one being 'harder' than the other, and can therefore be switched independently by a suitable choice of electrical current. In this way four possible combinations for the magnetic states can be addressed by electrical currents, corresponding to two bits of information (see image).

Furthermore, the researchers introduced magnetic layers polarized in the in-plane direction that enhance the torque effect and thereby reduce the overall electrical current required to write information.

In the future, the researchers plan to use a different device design based on electrons 'tunnelling' across an insulating layer. "These magnetic tunnel junctions provide a higher read signal than for a giant magnetoresistance-type device," says Sbiaa.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Sbiaa, R. Law, S. Y. H. Lua, E. L. Tan, T. Tahmasebi, C. C. Wang, S. N. Piramanayagam. Spin transfer torque switching for multi-bit per cell magnetic memory with perpendicular anisotropy. Applied Physics Letters, 2011; 99 (9): 092506 DOI: 10.1063/1.3632075

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Data storage: Magnetic memories." ScienceDaily. ScienceDaily, 1 February 2012. <www.sciencedaily.com/releases/2012/02/120201102826.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, February 1). Data storage: Magnetic memories. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/02/120201102826.htm
The Agency for Science, Technology and Research (A*STAR). "Data storage: Magnetic memories." ScienceDaily. www.sciencedaily.com/releases/2012/02/120201102826.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins