Featured Research

from universities, journals, and other organizations

Report on Texas fire urges firefighters to consider wind effects

Date:
February 8, 2012
Source:
National Institute of Standards and Technology (NIST)
Summary:
Wind conditions at a fire scene can make a critical difference on the behavior of the blaze and the safety of firefighters, even indoors, according to a new report.

Portion of a NIST computer simulation of an April 2009 residential fire in Houston, Texas.
Credit: NIST

Wind conditions at a fire scene can make a critical difference on the behavior of the blaze and the safety of firefighters, even indoors, according to a new report by the National Institute of Standards and Technology (NIST). The findings confirm earlier NIST research, but they take on a particular immediacy because they are based on detailed computer models of a tragic 2009 residential fire in Houston, Texas, that claimed the lives of two firefighters.

Related Articles


The NIST modeling was done at the request of the Houston Fire Department (HFD) and the Centers for Disease Control and Prevention's National Institute for Occupational Safety and Health (NIOSH), both of which wanted expert insight into the fire dynamics (behavior) that killed a 29-year veteran captain and a probationary firefighter.

Two NIST fire experts traveled to Houston shortly after the April 12, 2009, fire in a one-story ranch-style home located on the east side of the city. They examined the site and collected data about the behavior of the fire and the factors impacting that behavior -- in particular, the wind at the time -- in order to unravel the events that led to the deaths of the two men.

This was accomplished by creating sophisticated computer models of the fire and then visualizing them using two popular NIST software tools: the Fire Dynamics Simulator (FDS), which numerically characterizes the movement of smoke and hot gases caused by fire, wind and ventilation systems; and Smokeview, which displays the FDS calculation results as animations. The simulations portrayed two different scenarios of the Houston fire. The first demonstrated the actual conditions that firefighters experienced that day, including the contributing role of wind, while the second was intended to show how the fire may have behaved in the absence of wind. The wind-included scenario indicated that the fire followed a wind-driven flow path between the den and the front door after the failure of a large span of windows in the den. Floor-to-ceiling temperatures rapidly increased -- in some areas, in excess of 260 degrees Celsius (500 degrees Fahrenheit) -- in this flow path where multiple crews of firefighters were working. In the NIST simulation that excluded wind, the flow path was not created, and the temperatures and conditions where the firefighters were working were significantly less hazardous.

The authors of the NIST report, Adam Barowy and Daniel Madrzykowski, stated that "the 'wind' and 'no wind' simulations clearly demonstrate how wind conditions can rapidly change the thermal environment from tenable (survivable) to untenable for firefighters working in a single-story residential structure fire." They add that the results from the Houston fire simulations are in agreement with those NIST has done in collaboration with the Fire Department of New York City and the Chicago Fire Department for wind-driven fires in high-rise structures. This, the authors said, stresses the importance of including wind conditions for all structural fire scene operations -- both before and during firefighting -- and adjusting tactics according to changing wind situations, especially regarding interior operations, to enhance the safety, and maximize the effectiveness, of firefighters.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology (NIST). "Report on Texas fire urges firefighters to consider wind effects." ScienceDaily. ScienceDaily, 8 February 2012. <www.sciencedaily.com/releases/2012/02/120208132848.htm>.
National Institute of Standards and Technology (NIST). (2012, February 8). Report on Texas fire urges firefighters to consider wind effects. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2012/02/120208132848.htm
National Institute of Standards and Technology (NIST). "Report on Texas fire urges firefighters to consider wind effects." ScienceDaily. www.sciencedaily.com/releases/2012/02/120208132848.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins