Featured Research

from universities, journals, and other organizations

Report on Texas fire urges firefighters to consider wind effects

Date:
February 8, 2012
Source:
National Institute of Standards and Technology (NIST)
Summary:
Wind conditions at a fire scene can make a critical difference on the behavior of the blaze and the safety of firefighters, even indoors, according to a new report.

Portion of a NIST computer simulation of an April 2009 residential fire in Houston, Texas.
Credit: NIST

Wind conditions at a fire scene can make a critical difference on the behavior of the blaze and the safety of firefighters, even indoors, according to a new report by the National Institute of Standards and Technology (NIST). The findings confirm earlier NIST research, but they take on a particular immediacy because they are based on detailed computer models of a tragic 2009 residential fire in Houston, Texas, that claimed the lives of two firefighters.

The NIST modeling was done at the request of the Houston Fire Department (HFD) and the Centers for Disease Control and Prevention's National Institute for Occupational Safety and Health (NIOSH), both of which wanted expert insight into the fire dynamics (behavior) that killed a 29-year veteran captain and a probationary firefighter.

Two NIST fire experts traveled to Houston shortly after the April 12, 2009, fire in a one-story ranch-style home located on the east side of the city. They examined the site and collected data about the behavior of the fire and the factors impacting that behavior -- in particular, the wind at the time -- in order to unravel the events that led to the deaths of the two men.

This was accomplished by creating sophisticated computer models of the fire and then visualizing them using two popular NIST software tools: the Fire Dynamics Simulator (FDS), which numerically characterizes the movement of smoke and hot gases caused by fire, wind and ventilation systems; and Smokeview, which displays the FDS calculation results as animations. The simulations portrayed two different scenarios of the Houston fire. The first demonstrated the actual conditions that firefighters experienced that day, including the contributing role of wind, while the second was intended to show how the fire may have behaved in the absence of wind. The wind-included scenario indicated that the fire followed a wind-driven flow path between the den and the front door after the failure of a large span of windows in the den. Floor-to-ceiling temperatures rapidly increased -- in some areas, in excess of 260 degrees Celsius (500 degrees Fahrenheit) -- in this flow path where multiple crews of firefighters were working. In the NIST simulation that excluded wind, the flow path was not created, and the temperatures and conditions where the firefighters were working were significantly less hazardous.

The authors of the NIST report, Adam Barowy and Daniel Madrzykowski, stated that "the 'wind' and 'no wind' simulations clearly demonstrate how wind conditions can rapidly change the thermal environment from tenable (survivable) to untenable for firefighters working in a single-story residential structure fire." They add that the results from the Houston fire simulations are in agreement with those NIST has done in collaboration with the Fire Department of New York City and the Chicago Fire Department for wind-driven fires in high-rise structures. This, the authors said, stresses the importance of including wind conditions for all structural fire scene operations -- both before and during firefighting -- and adjusting tactics according to changing wind situations, especially regarding interior operations, to enhance the safety, and maximize the effectiveness, of firefighters.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology (NIST). "Report on Texas fire urges firefighters to consider wind effects." ScienceDaily. ScienceDaily, 8 February 2012. <www.sciencedaily.com/releases/2012/02/120208132848.htm>.
National Institute of Standards and Technology (NIST). (2012, February 8). Report on Texas fire urges firefighters to consider wind effects. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2012/02/120208132848.htm
National Institute of Standards and Technology (NIST). "Report on Texas fire urges firefighters to consider wind effects." ScienceDaily. www.sciencedaily.com/releases/2012/02/120208132848.htm (accessed September 15, 2014).

Share This



More Earth & Climate News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) — In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) — Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) — The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins