Featured Research

from universities, journals, and other organizations

Tangled up in DNA: New molecule has potential to help treat genetic diseases and HIV

Date:
February 14, 2012
Source:
University of Texas at Austin
Summary:
Chemists have created a molecule that's so good at tangling itself inside the double helix of a DNA sequence that it can stay there for up to 16 days before the DNA liberates itself, much longer than any other molecule reported.

Chemists at The University of Texas at Austin have synthesized a molecule that can entangle itself in a specific sequence of DNA and stay attached for 16 days, longer than any other molecule reported.
Credit: Image courtesy of University of Texas at Austin

Chemists at The University of Texas at Austin have created a molecule that's so good at tangling itself inside the double helix of a DNA sequence that it can stay there for up to 16 days before the DNA liberates itself, much longer than any other molecule reported.

It's an important step along the path to someday creating drugs that can go after rogue DNA directly. Such drugs would be revolutionary in the treatment of genetic diseases, cancer or retroviruses such as HIV, which incorporate viral DNA directly into the body's DNA.

"If you think of DNA as a spiral staircase," says Brent Iverson, professor of chemistry and chair of the department of chemistry and biochemistry, "imagine sliding something between the steps. That's what our molecule does. It can be visualized as binding to DNA in the same way a snake might climb a ladder. It goes back and forth through the central staircase with sections of it between the steps. Once in, it takes a long time to get loose."

Iverson says the goal is to be able to directly turn on or off a particular sequence of genes.

"Take HIV, for example," he says. "We want to be able to track it to wherever it is in the chromosome and just sit on it and keep it quiet. Right now we treat HIV at a much later stage with drugs such as the protease inhibitors, but at the end of the day, the HIV DNA is still there. This would be a way to silence that stuff at its source."

Iverson, whose results were published in September in Nature Chemistry, strongly cautions that there are numerous obstacles to overcome before such treatments could become available.

The hypothetical drug would have to be able to get into cells and hunt down a long and specific DNA sequence in the right region of our genome. It would have to be able to bind to that sequence and stay there long enough to be therapeutically meaningful.

"Those are the big hurdles, but we jumped over two of them," says Iverson. "I'll give presentations in which I begin by asking: Can DNA be a highly specific drug target? When I start, a lot of the scientists in the audience think it's a ridiculous question. By the time I'm done, and I've shown them what we can do, it's not so ridiculous anymore."

In order to synthesize their binding molecule, Iverson and his colleagues begin with the base molecule naphthalenetetracarboxylic diimide (NDI). It's a molecule that Iverson's lab has been studying for more than a decade.

They then piece NDI units together like a chain of tinker toys.

"It's pretty simple for us to make," says Amy Rhoden Smith, a doctoral student in Iverson's lab and co-author on the paper. "We are able to grow the chain of NDIs from special resin beads. We run reactions right on the beads, attach pieces in the proper order and keep growing the molecules until we are ready to cleave them off. It's mostly automated at this point."

Rhoden Smith says that the modular nature of these NDI chains, and the ease of assembly, should help enormously as they work toward developing molecules that bind to longer and more biologically significant DNA sequences.

"The larger molecule is composed of little pieces that bind to short segments of DNA, kind of like the way Legos fit together," she says. "The little pieces can bind different sequences, and we can put them together in different ways. We can put the Legos in a different arrangement. Then we scan for sequences that they'll bind."

Iverson and Rhoden Smith's co-authors on the paper were Maha Zewail-Foote, a visiting scientist in Iverson's lab who's now an associate professor and chairman of chemistry at Southwestern University in Georgetown; Garen Holman, another former doctoral student of Iverson's who did most of the experimental work before obtaining his Ph.D.; and Kenneth Johnson, the Roger J. Williams Centennial Professor in Biochemistry at The University of Texas at Austin.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Journal Reference:

  1. Garen G. Holman, Maha Zewail-Foote, Amy Rhoden Smith, Kenneth A. Johnson, Brent L. Iverson. A sequence-specific threading tetra-intercalator with an extremely slow dissociation rate constant. Nature Chemistry, 2011; 3 (11): 875 DOI: 10.1038/nchem.1151

Cite This Page:

University of Texas at Austin. "Tangled up in DNA: New molecule has potential to help treat genetic diseases and HIV." ScienceDaily. ScienceDaily, 14 February 2012. <www.sciencedaily.com/releases/2012/02/120214134942.htm>.
University of Texas at Austin. (2012, February 14). Tangled up in DNA: New molecule has potential to help treat genetic diseases and HIV. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/02/120214134942.htm
University of Texas at Austin. "Tangled up in DNA: New molecule has potential to help treat genetic diseases and HIV." ScienceDaily. www.sciencedaily.com/releases/2012/02/120214134942.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins