Featured Research

from universities, journals, and other organizations

Physicists create working transistor consisting of a single atom

Date:
February 19, 2012
Source:
University of New South Wales
Summary:
In a remarkable feat of micro-engineering, physicists have created a working transistor consisting of a single atom placed precisely in a silicon crystal. The tiny electronic device uses as its active component an individual phosphorus atom.

This 3D perspective of an STM image shows a perfectly symmetrical single-atom transistor.
Credit: Image courtesy of University of New South Wales

In a remarkable feat of micro-engineering, an international team of researchers, including physicists at the University of New South Wales in Australia, have created a working transistor consisting of a single atom placed precisely in a silicon crystal.

The tiny electronic device, described in a paper published in the journal Nature Nanotechnology, uses as its active component an individual phosphorus atom patterned between atomic-scale electrodes and electrostatic control gates.

This unprecedented atomic accuracy may yield the elementary building block for a future quantum computer with unparalleled computational efficiency.

Until now, single-atom transistors have been realised only by chance, where researchers either have had to search through many devices or tune multi-atom devices to isolate one that works.

"But this device is perfect," says Professor Michelle Simmons, group leader and director of the ARC Centre for Quantum Computation and Communication Technology at UNSW. "This is the first time anyone has shown control of a single atom in a substrate with this level of precise accuracy."

The microscopic device even has tiny visible markers etched onto its surface so researchers can connect metal contacts and apply a voltage, says research fellow and lead author Dr Martin Fuechsle from UNSW.

"Our group has proved that it is really possible to position one phosphorus atom in a silicon environment -- exactly as we need it -- with near-atomic precision, and at the same time register gates," he says.

The device is also remarkable, says Dr Fuechsle, because its electronic characteristics exactly match theoretical predictions undertaken with Professor Gerhard Klimeck's group at Purdue University in the US and Professor Hollenberg's group at the University of Melbourne, the joint authors on the paper.

The UNSW team used a scanning tunnelling microscope (STM) to see and manipulate atoms at the surface of the crystal inside an ultra-high vacuum chamber. Using a lithographic process, they patterned phosphorus atoms into functional devices on the crystal then covered them with a non-reactive layer of hydrogen.

Hydrogen atoms were removed selectively in precisely defined regions with the super-fine metal tip of the STM. A controlled chemical reaction then incorporated phosphorus atoms into the silicon surface.

Finally, the structure was encapsulated with a silicon layer and the device contacted electrically using an intricate system of alignment markers on the silicon chip to align metallic connects. The electronic properties of the device were in excellent agreement with theoretical predictions for a single phosphorus atom transistor.

It is predicted that transistors will reach the single-atom level by about 2020 to keep pace with Moore's Law, which describes an ongoing trend in computer hardware that sees the number of chip components double every 18 months.

This major advance has developed the technology to make this possible well ahead of schedule and gives valuable insights to manufacturers into how devices will behave once they reach the atomic limit, says Professor Simmons.

Youtube video of transistor: http://www.youtube.com/watch?v=ue4z9lB5ZHg&feature=youtu.be


Story Source:

The above story is based on materials provided by University of New South Wales. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Fuechsle, Jill A. Miwa, Suddhasatta Mahapatra, Hoon Ryu, Sunhee Lee, Oliver Warschkow, Lloyd C. L. Hollenberg, Gerhard Klimeck, Michelle Y. Simmons. A single-atom transistor. Nature Nanotechnology, 2012; DOI: 10.1038/nnano.2012.21

Cite This Page:

University of New South Wales. "Physicists create working transistor consisting of a single atom." ScienceDaily. ScienceDaily, 19 February 2012. <www.sciencedaily.com/releases/2012/02/120219143220.htm>.
University of New South Wales. (2012, February 19). Physicists create working transistor consisting of a single atom. ScienceDaily. Retrieved July 21, 2014 from www.sciencedaily.com/releases/2012/02/120219143220.htm
University of New South Wales. "Physicists create working transistor consisting of a single atom." ScienceDaily. www.sciencedaily.com/releases/2012/02/120219143220.htm (accessed July 21, 2014).

Share This




More Matter & Energy News

Monday, July 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Single-Atom Transistor Is End of Moore's Law; May Be Beginning of Quantum Computing

Feb. 19, 2012 The smallest transistor ever built -- in fact, the smallest transistor that can be built -- has been created using a single phosphorus atom by an international team of ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins