Featured Research

from universities, journals, and other organizations

Physicists create working transistor consisting of a single atom

Date:
February 19, 2012
Source:
University of New South Wales
Summary:
In a remarkable feat of micro-engineering, physicists have created a working transistor consisting of a single atom placed precisely in a silicon crystal. The tiny electronic device uses as its active component an individual phosphorus atom.

This 3D perspective of an STM image shows a perfectly symmetrical single-atom transistor.
Credit: Image courtesy of University of New South Wales

In a remarkable feat of micro-engineering, an international team of researchers, including physicists at the University of New South Wales in Australia, have created a working transistor consisting of a single atom placed precisely in a silicon crystal.

Related Articles


The tiny electronic device, described in a paper published in the journal Nature Nanotechnology, uses as its active component an individual phosphorus atom patterned between atomic-scale electrodes and electrostatic control gates.

This unprecedented atomic accuracy may yield the elementary building block for a future quantum computer with unparalleled computational efficiency.

Until now, single-atom transistors have been realised only by chance, where researchers either have had to search through many devices or tune multi-atom devices to isolate one that works.

"But this device is perfect," says Professor Michelle Simmons, group leader and director of the ARC Centre for Quantum Computation and Communication Technology at UNSW. "This is the first time anyone has shown control of a single atom in a substrate with this level of precise accuracy."

The microscopic device even has tiny visible markers etched onto its surface so researchers can connect metal contacts and apply a voltage, says research fellow and lead author Dr Martin Fuechsle from UNSW.

"Our group has proved that it is really possible to position one phosphorus atom in a silicon environment -- exactly as we need it -- with near-atomic precision, and at the same time register gates," he says.

The device is also remarkable, says Dr Fuechsle, because its electronic characteristics exactly match theoretical predictions undertaken with Professor Gerhard Klimeck's group at Purdue University in the US and Professor Hollenberg's group at the University of Melbourne, the joint authors on the paper.

The UNSW team used a scanning tunnelling microscope (STM) to see and manipulate atoms at the surface of the crystal inside an ultra-high vacuum chamber. Using a lithographic process, they patterned phosphorus atoms into functional devices on the crystal then covered them with a non-reactive layer of hydrogen.

Hydrogen atoms were removed selectively in precisely defined regions with the super-fine metal tip of the STM. A controlled chemical reaction then incorporated phosphorus atoms into the silicon surface.

Finally, the structure was encapsulated with a silicon layer and the device contacted electrically using an intricate system of alignment markers on the silicon chip to align metallic connects. The electronic properties of the device were in excellent agreement with theoretical predictions for a single phosphorus atom transistor.

It is predicted that transistors will reach the single-atom level by about 2020 to keep pace with Moore's Law, which describes an ongoing trend in computer hardware that sees the number of chip components double every 18 months.

This major advance has developed the technology to make this possible well ahead of schedule and gives valuable insights to manufacturers into how devices will behave once they reach the atomic limit, says Professor Simmons.

Youtube video of transistor: http://www.youtube.com/watch?v=ue4z9lB5ZHg&feature=youtu.be


Story Source:

The above story is based on materials provided by University of New South Wales. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Fuechsle, Jill A. Miwa, Suddhasatta Mahapatra, Hoon Ryu, Sunhee Lee, Oliver Warschkow, Lloyd C. L. Hollenberg, Gerhard Klimeck, Michelle Y. Simmons. A single-atom transistor. Nature Nanotechnology, 2012; DOI: 10.1038/nnano.2012.21

Cite This Page:

University of New South Wales. "Physicists create working transistor consisting of a single atom." ScienceDaily. ScienceDaily, 19 February 2012. <www.sciencedaily.com/releases/2012/02/120219143220.htm>.
University of New South Wales. (2012, February 19). Physicists create working transistor consisting of a single atom. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/02/120219143220.htm
University of New South Wales. "Physicists create working transistor consisting of a single atom." ScienceDaily. www.sciencedaily.com/releases/2012/02/120219143220.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Single-Atom Transistor Is End of Moore's Law; May Be Beginning of Quantum Computing

Feb. 19, 2012 The smallest transistor ever built -- in fact, the smallest transistor that can be built -- has been created using a single phosphorus atom by an international team of ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins