Featured Research

from universities, journals, and other organizations

Origin of photosynthesis revealed: Genome analysis of 'living fossil' sheds light on the evolution of plants

Date:
February 21, 2012
Source:
Rutgers University
Summary:
Evolutionary biologists have shed light on the early events leading to photosynthesis, the result of the sequencing of 70 million base pair nuclear genome of the one-celled alga Cyanophora. They consider this study the final piece of the puzzle to understand the origin of photosynthesis in eukaryotes.

Schematic of Cyanophora paradoxa.
Credit: Courtesy of Bhattacharya Lab.

Atmospheric oxygen really took off on our planet about 2.4 billion years ago during the Great Oxygenation Event. At this key juncture of our planet's evolution, species had either to learn to cope with this poison that was produced by photosynthesizing cyanobacteria or they went extinct. It now seems strange to think that the gas that sustains much of modern life had such a distasteful beginning.

Related Articles


So how and when did the ability to produce oxygen by harnessing sunlight enter the eukaryotic domain, that includes humans, plants, and most recognizable, multicellular life forms? One of the fundamental steps in the evolution of our planet was the development of photosynthesis in eukaryotes through the process of endosymbiosis.

This crucial step forward occurred about 1.6 billion years ago when a single-celled protist captured and retained a formerly free-living cyanobacterium. This process, termed primary endosymbiosis, gave rise to the plastid, which is the specialized compartment where photosynthesis takes place in cells. Endosymbiosis is now a well substantiated theory that explains how cells gained their great complexity and was made famous most recently by the work of the late biologist Lynn Margulis, best known for her theory on the origin of eukaryotic organelles.

In a paper "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants" that appeared this week in the journal Science, an international team led by evolutionary biologist and Rutgers University professor Debashish Bhattacharya has shed light on the early events leading to photosynthesis, the result of the sequencing of 70 million base pair nuclear genome of the one-celled alga Cyanophora.

In the world of plants, "Cyanophora is the equivalent to the lung fish, in that it maintains some primitive characteristics that make it an ideal candidate for genome sequencing," said Bhattacharya.

Bhattacharya and colleagues consider this study "the final piece of the puzzle to understand the origin of photosynthesis in eukaryotes." Basic understanding of much of the subsequent evolution of eukaryotes, including the rise of plants and animals, is emerging from the sequencing of the Cyanophora paradoxa genome, a function-rich species that retains much of the ancestral gene diversity shared by algae and plants.

For those unfamiliar with algae, they include the ubiquitious diatoms that are some of the most prodigious primary producers on our planet, accounting for up to 40% of the annual fixed carbon in the marine environment.

Bhattacharya leads the Rutgers Genome Cooperative that has spread the use of genome methods among university faculty. Using data generated by the Illumina Genome Analyzer IIx in his lab, Bhattacharya, his lab members Dana C. Price, Cheong Xin Chan, Jeferson Gross, Divino Rajah and collaborators from the U.S., Europe and Canada provided conclusive evidence that all plastids trace their origin to a single primary endosymbiosis.

Now that the blueprint of eukaryotic photosynthesis has come more clearly in sight, researchers will be able to figure out not only what unites all algae as plants but also what key features make them different from each other and the genes underlying these functions.


Story Source:

The above story is based on materials provided by Rutgers University. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. C. Price, C. X. Chan, H. S. Yoon, E. C. Yang, H. Qiu, A. P. M. Weber, R. Schwacke, J. Gross, N. A. Blouin, C. Lane, A. Reyes-Prieto, D. G. Durnford, J. A. D. Neilson, B. F. Lang, G. Burger, J. M. Steiner, W. Loffelhardt, J. E. Meuser, M. C. Posewitz, S. Ball, M. C. Arias, B. Henrissat, P. M. Coutinho, S. A. Rensing, A. Symeonidi, H. Doddapaneni, B. R. Green, V. D. Rajah, J. Boore, D. Bhattacharya. Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants. Science, 2012; 335 (6070): 843 DOI: 10.1126/science.1213561

Cite This Page:

Rutgers University. "Origin of photosynthesis revealed: Genome analysis of 'living fossil' sheds light on the evolution of plants." ScienceDaily. ScienceDaily, 21 February 2012. <www.sciencedaily.com/releases/2012/02/120221125409.htm>.
Rutgers University. (2012, February 21). Origin of photosynthesis revealed: Genome analysis of 'living fossil' sheds light on the evolution of plants. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2012/02/120221125409.htm
Rutgers University. "Origin of photosynthesis revealed: Genome analysis of 'living fossil' sheds light on the evolution of plants." ScienceDaily. www.sciencedaily.com/releases/2012/02/120221125409.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Fossils & Ruins News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gerbils, Not Rats, Might Be To Blame For The Black Death

Gerbils, Not Rats, Might Be To Blame For The Black Death

Newsy (Feb. 24, 2015) The "black death" that killed tens of millions of people has been blamed on rats for years, but now researchers say they may have gotten a bad rap. Video provided by Newsy
Powered by NewsLook.com
Timbuktu Manuscripts Face an Uncertain Future

Timbuktu Manuscripts Face an Uncertain Future

AFP (Feb. 23, 2015) Two years ago a large number of manuscripts were taken from Timbuktu for safe keeping. Now the question is whether to return them. Duration: 02:50 Video provided by AFP
Powered by NewsLook.com
How Did A Mummy End Up In A 1,000-Year-Old Buddha Statue?

How Did A Mummy End Up In A 1,000-Year-Old Buddha Statue?

Newsy (Feb. 23, 2015) A CT scan has revealed a mummified Chinese monk inside a Buddha statue. The remains date back about 1,000 years. Video provided by Newsy
Powered by NewsLook.com
Rare First Folio Arrives at Shakespeare's Globe Theatre

Rare First Folio Arrives at Shakespeare's Globe Theatre

Reuters - Light News Video Online (Feb. 23, 2015) A rare First Folio discovered in a French library arrives at the Shakespeare&apos;s Globe Theatre in London, where the Bard&apos;s plays were first performed. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Origin of Photosynthesis Revealed by a 'living Fossil'

Feb. 17, 2012 Recently, the complete genome of a glaucophyte alga (Cyanophora paradoxa) has been unraveled by an international ... read more

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins