Featured Research

from universities, journals, and other organizations

Observing single atoms during relaxation toward equilibrium

Date:
February 22, 2012
Source:
Freie Universitaet Berlin
Summary:
Scientists have succeeded for the first time in simulating the dynamic behavior of strongly correlated individual atoms in solids. They were able to string atoms in so-called optical lattices and observe their dynamic behavior, which is determined by complex interactions with other atoms.

Scientists from Freie Universität Berlin, the Max Planck Institute of Quantum Optics, and Ludwig-Maximilians-Universität München (LMU Munich) have succeeded for the first time in simulating the dynamic behavior of strongly correlated individual atoms in solids. They were able to string atoms in so-called optical lattices and observe their dynamic behavior, which is determined by complex interactions with other atoms.

According to the involved researchers, the findings hold promise for understanding fundamental processes as well as addressing significant issues that have long been poorly understood. To some extent the experiments can explain how systems that are not in equilibrium can be returned to the steady state or how certain macroscopic properties such as temperature originate. The experiments and the underlying theories were published in the latest edition of Nature Physics.

The new experiment was carried out by Immanuel Bloch's group at the Max Planck Institute of Quantum Optics. It was supported by new analytical considerations and numerical calculations on supercomputers by the groups around Uli Schollwöck at LMU Munich and Jens Eisert at Freie Universität Berlin. The findings are the first data on single atoms in strongly correlated samples in optical lattices that were brought into a controlled non-equilibrium.


Story Source:

The above story is based on materials provided by Freie Universitaet Berlin. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Physics, 2012; DOI: 10.1038/nphys2232

Cite This Page:

Freie Universitaet Berlin. "Observing single atoms during relaxation toward equilibrium." ScienceDaily. ScienceDaily, 22 February 2012. <www.sciencedaily.com/releases/2012/02/120222093845.htm>.
Freie Universitaet Berlin. (2012, February 22). Observing single atoms during relaxation toward equilibrium. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2012/02/120222093845.htm
Freie Universitaet Berlin. "Observing single atoms during relaxation toward equilibrium." ScienceDaily. www.sciencedaily.com/releases/2012/02/120222093845.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) — UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) — China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins