Featured Research

from universities, journals, and other organizations

Eye movement not engaged in 'arms race'

Date:
February 28, 2012
Source:
New York University
Summary:
We make our eye movements earlier or later in order to coordinate with movements of our arms, neuroscientists have found. Their study points to a mechanism in the brain that allows for this coordination and may have implications for rehabilitation and prosthetics.

We make our eye movements earlier or later in order to coordinate with movements of our arms, New York University neuroscientists have found. Their study, which appears in the journal Neuron, points to a mechanism in the brain that allows for this coordination and may have implications for rehabilitation and prosthetics.

Researchers have sought to understand the neurological processes behind eye and arm movements. For example, when you reach for an object, what goes on in our brains so that our eyes and arms are in sync? Such coordination is central to the way different systems of the brain communicate with each other, and these undertakings are surprisingly complicated -- due to differences in weight, for instance, the arm takes longer than the eye to move.

The question is vital to rehabilitation -- a better understanding of these neurological processes may help address the needs of those who have suffered brain injuries and struggle to coordinate movements among different parts of the body. In addition, new insights in this area could lead to more advanced neural prosthetics, which are artificial extensions to the body that restore or supplement function of the nervous system lost during disease or injury. Currently, these devices are somewhat primitive given our relatively limited knowledge of how the brain works to coordinate movement.

In their study, the NYU researchers examined the neurological activity of macaque monkeys while the subjects performed a variety of tasks that required them to either reach and to simultaneously employ rapid eye movements or to only use rapid eye movements, also known as saccades.

The resulting readings revealed significant coherent patterns of firing of neurons in the brain's posterior parietal cortex (PPC) when both the eyes and arms were required to move for the same task, but not for tasks that involved only saccades. The patterns of firing were found in regions of the PPC that are specialized for moving either the eye or the arm.

Coherent patterns of firing may be due to these different brain areas communicating when coordinating movement, the research team concluded.

"We think we have a mechanism for coordination," explained Bijan Pesaran, a professor in NYU's Center for Neuroscience and the study's senior author, adding that the finding is only a step and additional study is likely to reveal a more complex process. "Our findings show it is the patterns of activity in a specific region of the brain just prior to both saccades and reaching that are important."

In addition, their data showed a coordination of movement between the eyes and arms.

"The brain adjusts timing of eye movements, depending on how long it takes to start moving the arm," Pesaran explained. "Our study is asking how information flows between the arm and eye movement systems, and it shows how coherent patterns of neural activity are important to this communication."

The study's other co-authors were Heather Dean and Maureen Hagan, postdoctoral fellows in NYU's Center for Neural Science.

The research was supported by grants from: the National Science Foundation; the National Institutes of Health; NYSTAR; the Sloan Fondation; the McKnight Endowment Fund for Neuroscience; and the Burroughs Wellcome Fund.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. HeatherL. Dean, MaureenA. Hagan, Bijan Pesaran. Only Coherent Spiking in Posterior Parietal Cortex Coordinates Looking and Reaching. Neuron, 2012; 73 (4): 829 DOI: 10.1016/j.neuron.2011.12.035

Cite This Page:

New York University. "Eye movement not engaged in 'arms race'." ScienceDaily. ScienceDaily, 28 February 2012. <www.sciencedaily.com/releases/2012/02/120228114040.htm>.
New York University. (2012, February 28). Eye movement not engaged in 'arms race'. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/02/120228114040.htm
New York University. "Eye movement not engaged in 'arms race'." ScienceDaily. www.sciencedaily.com/releases/2012/02/120228114040.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins