Featured Research

from universities, journals, and other organizations

Smart, self-healing hydrogels open far-reaching possibilities in medicine, engineering

Date:
March 5, 2012
Source:
University of California - San Diego
Summary:
Bioengineers have developed a self-healing hydrogel that binds in seconds, as easily as Velcro, and forms a bond strong enough to withstand repeated stretching. The material has numerous potential applications, including medical sutures, targeted drug delivery, industrial sealants and self-healing plastics.

Bioengineering Ph.D. student Ameya Phadke stretches two bonded hydrogels, demonstrating the strength of their bond.
Credit: Joshua Knoff, UC San Diego Jacobs School of Engineering

University of California, San Diego bioengineers have developed a self-healing hydrogel that binds in seconds, as easily as Velcro, and forms a bond strong enough to withstand repeated stretching. The material has numerous potential applications, including medical sutures, targeted drug delivery, industrial sealants and self-healing plastics, a team of UC San Diego Jacobs School of Engineering researchers reported March 5 in the online Early Edition of the Proceedings of the National Academy of Sciences.

Related Articles


Hydrogels are made of linked chains of polymer molecules that form a flexible, jello-like material similar to soft-tissues. Until now, researchers have been unable to develop hydrogels that can rapidly repair themselves when a cut was introduced, limiting their potential applications. The team, led by Shyni Varghese, overcame this challenge with the use of "dangling side chain" molecules that extend like fingers on a hand from the primary structure of the hydrogel network and enable them to grasp one another.

"Self-healing is one of the most fundamental properties of living tissues that allows them to sustain repeated damage," says Varghese. "Being bioengineers, one question that repeatedly appeared before us was if one could mimic self-healing in synthetic, tissue-like materials such as hydrogels. The benefits of creating such an aqueous self-healing material would be far-reaching in medicine and engineering."

To design the side chain molecules of the hydrogel that would enable rapid self-healing, Varghese and her collaborators performed computer simulations of the hydrogel network. The simulations revealed that the ability of the hydrogel to self-heal depended critically on the length of the side chain molecules, or fingers, and that hydrogels having an optimal length of side chain molecules exhibited the strongest self-healing. When two cylindrical pieces of gels featuring these optimized fingers were placed together in an acidic solution, they stuck together instantly. Varghese's lab further found that by simply adjusting the solution's pH levels up or down, the pieces weld (low pH) and separate (high pH) very easily. The process was successfully repeated numerous times without any reduction in the weld strength.

Ameya Phadke, a fourth year PhD student in Varghese's lab said the hydrogel's strength and flexibility in an acidic environment -- similar to that of the stomach -- makes it ideal as an adhesive to heal stomach perforations or for controlled drug delivery to ulcers.

Such healing material could also be useful in the field of energy conservation and recycling where self-healing materials could help reduce industrial and consumer waste, according to Varghese. Additionally, the rapidity of self-healing in response to acids makes the material a promising candidate to seal leakages from containers containing corrosive acids. To test this theory, her lab cut a hole in the bottom of a plastic container, "healed" it by sealing the hole with the hydrogel and demonstrated that it prevented any leakage of acid through the hole.

Moving forward, Varghese and her lab hope to test the material in its envisioned applications on a larger scale. The team also hopes to engineer other varieties of hydrogels that self-heal at different pH values, thereby extending the applications of such hydrogels beyond acidic conditions.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ameya Phadke, Chao Zhang, Bedri Arman, Cheng-Chih Hsu, Raghunath A. Mashelkar, Ashish K. Lele, Michael J. Tauber, Gaurav Arya, and Shyni Varghese. Rapid self-healing hydrogels. Proceedings of the National Academy of Sciences, March 5, 2012 DOI: 10.1073/pnas.1201122109

Cite This Page:

University of California - San Diego. "Smart, self-healing hydrogels open far-reaching possibilities in medicine, engineering." ScienceDaily. ScienceDaily, 5 March 2012. <www.sciencedaily.com/releases/2012/03/120305160650.htm>.
University of California - San Diego. (2012, March 5). Smart, self-healing hydrogels open far-reaching possibilities in medicine, engineering. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2012/03/120305160650.htm
University of California - San Diego. "Smart, self-healing hydrogels open far-reaching possibilities in medicine, engineering." ScienceDaily. www.sciencedaily.com/releases/2012/03/120305160650.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins