Featured Research

from universities, journals, and other organizations

The cutting edge: Exploring the efficiency of bladed tooth shape

Date:
March 6, 2012
Source:
University of Bristol
Summary:
Using a combination of guillotine-based experiments and cutting-edge computer modeling, researchers have explored the most efficient ways for teeth to slice food. Their results show just how precisely the shape of an animal's teeth is optimized to suit the type of food it eats.

Illustration of the experimental and theoretical analyses. Upper left: A picture of the double guillotine testing device used in physical experiments. Upper right: The finite element model created to mimic the physical experiments and allow for further modelling. Lower left: sample of tooth models for experiments made from steel. Lower right: Cheek tooth (carnassial) of a North American Fisher (Martes pennanti) illustrating the presence of V-shaped notched blades in nature.
Credit: Image by Dr Philip Anderson

Using a combination of guillotine-based experiments and cutting-edge computer modelling, researchers at the University of Bristol have explored the most efficient ways for teeth to slice food.

Related Articles


Their results, published March 6 in Journal of the Royal Society Interface, show just how precisely the shape of an animal's teeth is optimized to suit the type of food it eats.

There is a massive variety of tooth shapes in the natural world, from long, serrated teeth in Tyrannosaurus rex to triangular teeth in sharks and our own complex molars. Teeth can enable animals to crush, chop, grind or even slice food into pieces small enough to swallow. However, such cutting instruments are not restricted to toothed animals. Bird beaks, insect mouth parts and even the roughened tongue of snails can also be used to break down food.

Given all this variety in tooth form, surprisingly little has been done to examine how teeth are able to cut and break food. Two researchers at the University of Bristol, Dr Philip Anderson and Dr Emily Rayfield, have attacked this problem using a combination of physical experiments and high-tech computer modelling.

Using a unique double-bladed guillotine, the researchers measured the force needed by different tooth shapes to compress food materials. Finite Element Analysis (FEA), an engineering computational technique, was then used to mimic these experiments and allow for different variables to be measured, such as the total energy required. It turns out that different shaped bladed teeth are optimized for different types of food.

Dr Anderson said: "The actual hardness or toughness of the food item has a strong effect on what type of tooth shape is most efficient for cutting it. We looked specifically at V-shaped bladed edges which are similar to tooth shapes found in some sharks and the cheek teeth of many carnivorous mammals, and found that the angle of the V could be optimized for different foods.

"This sort of analysis is only possible because we created a computer model to mimic the physical experiments. With the validated model, we were able to alter aspects of the tooth shape until we found a specific shape which used the least energy."

"These results might seem rather obvious," said Emily Rayfield, "because we know tooth shape is adapted to diet. But we were surprised at the preciseness and predictability of the fit of tooth shape to dietary item."

The researchers hope this new integrated methodology based on experimental analyses and theoretical computer modelling will create a new framework for exploring the evolutionary history of dental shape and how it relates to diet.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. S. L. Anderson and E. J. Rayfield. Virtual experiments, physical validation: dental morphology at the intersection of experiment and theory. Journal of the Royal Society Interface, 2012 (in press)

Cite This Page:

University of Bristol. "The cutting edge: Exploring the efficiency of bladed tooth shape." ScienceDaily. ScienceDaily, 6 March 2012. <www.sciencedaily.com/releases/2012/03/120306195658.htm>.
University of Bristol. (2012, March 6). The cutting edge: Exploring the efficiency of bladed tooth shape. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/03/120306195658.htm
University of Bristol. "The cutting edge: Exploring the efficiency of bladed tooth shape." ScienceDaily. www.sciencedaily.com/releases/2012/03/120306195658.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins