Featured Research

from universities, journals, and other organizations

New theory on formation of oldest continents

Date:
March 12, 2012
Source:
University of Bonn
Summary:
Geologists have demonstrated new scientific results to support a new theory on the earliest phase of continental formation.

Thorsten Nagel and J. Elis Hoffmann.
Credit: Volker Lannert/University of Bonn

Geologists from the Universities of Bonn and Cologne have demonstrated new scientific results in the April issue of the journal Geology, which provide a new theory on the earliest phase of continental formation.

Earth's structure can be compared to an orange: its crust is the peel supported by Earth's heavy mantle. That peel is made up of a continental crust 30 to 40 kilometers thick. It is much lighter than the thinner oceanic crust and protrudes from Earth's mantle because of its lower density, like an iceberg in the sea. "According to the current theory, the first continental crusts were formed when tectonic plates would collide, submerging oceanic crusts into Earth's mantle, where they would partially melt at a depth of approximately 100 kilometers. That molten rock then ascended to Earth's surface and formed the first continents," says adjunct professor Dr. Thorsten Nagel of the Steinmann Institute of Geosciences at the University of Bonn, lead author of the study. The theory has been supported by the oldest known continental rocks -- approximately 3.8 billion years old -- found in western Greenland.

The results presented by Nagel and colleagues challenge the traditional view of continental crust formation via melting of normal oceanic crust in a down-going slab and support scenarios of melting within tectonically thickened, hot crust.

Following trace elements

The composition of the continental crust corresponds to a semiliquid version of the oceanic crust melted by 10 to 30 percent of its original state. Unfortunately, the concentrations of the main chemical components in the re-solidified rock do not provide much information about what depth the fusion occurred at. "In order to find that out, you have to know what minerals the remaining 70 to 90 percent of the oceanic crust consisted of," explains Prof. Dr. Carsten Mόnker of the Institute of Geology and Mineralogy at the University of Cologne. Researchers from Bonn and Cologne have now analyzed the Greenlandic rocks for different elements occurring at various high concentrations, also know as trace elements. "Trace elements provide geologists with a window to the origin of continental crust," says Prof. Mόnker. "With their help, we can identify minerals in the residual rock that were deposited in the depths by the molten rock."

Before the magma separated from the bedrock, the semifluid rock and the leftover solid minerals actively exchanged trace elements. "Different minerals have characteristic ways of separating when trace elements are smelted. In other words, the concentration of trace elements in the molten rock provide a fingerprint of the residual bedrock," explains Dr. Elis Hoffmann from Bonn, coauthor of the study. The concentration of trace elements in the oldest continental rock allows geoscientists to reconstruct possible bedrock based on their minerals and thus determine at what depth the continental crust originated.

The oceanic crust did not have to descend

Using computers, the scientists simulated the composition of bedrock and molten rock that would emerge from partially melting the oceanic crust at various depths and temperatures. They then compared the data calculated for the molten rock with the actual concentration of trace elements in the oldest continental rocks. "Our results paint a surprising picture," Dr. Nagel reports. "The oceanic crust did not have to descend to a depth of 100 kilometers to create the molten rock that makes up the rocks of the first continents." According to the calculations, a depth of 30 to 40 kilometers is much more probable.

The primeval oceanic crust could have 'oozed' continents…it could definitely have had the power to do so in the Archean eon. Four billion years ago, the gradually cooling earth was still significantly warmer than it is today. The oceanic crust could have simply 'oozed' continents at the same time that other geological processes were occurring, like volcanism, orogeny, and the influx of water. "We think it is unlikely that the contents were formed into subduction zones. Whether or not tectonic plates of the primordial earth had such zones of subsidence is still a matter of debate," says the geologist from Bonn.


Story Source:

The above story is based on materials provided by University of Bonn. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. J. Nagel, J. E. Hoffmann, C. Munker. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology, 2012; DOI: 10.1130/G32729.1

Cite This Page:

University of Bonn. "New theory on formation of oldest continents." ScienceDaily. ScienceDaily, 12 March 2012. <www.sciencedaily.com/releases/2012/03/120312140318.htm>.
University of Bonn. (2012, March 12). New theory on formation of oldest continents. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/03/120312140318.htm
University of Bonn. "New theory on formation of oldest continents." ScienceDaily. www.sciencedaily.com/releases/2012/03/120312140318.htm (accessed July 24, 2014).

Share This




More Earth & Climate News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) — Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) — Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) — A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins